1
|
Gao Y, Wang Z, Wu J, Lu L. A cellular NO sensor based on aggregation-induced electrochemiluminescence and photoelectron transfer of a novel ruthenium(II) complex. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Chloroform Fraction of Prasiola japonica Ethanolic Extract Alleviates UPM 1648a-Induced Lung Injury by Suppressing NF-κB Signaling. Foods 2022; 12:foods12010088. [PMID: 36613305 PMCID: PMC9818875 DOI: 10.3390/foods12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Prasiola japonica is an edible alga, and the ethanol extract of P. japonica (Pj-EE) possesses various biological activities. Interestingly, in a recent study, we observed the potent anti-inflammatory activity of the chloroform fraction of Pj-EE (Pj-EE-CF). Thus, to extend the application of Pj-EE-CF, we further studied its effects on lung injury. To establish an experimental model of lung injury, we nasally administered urban particulate matter UPM 1648a (50 mg/kg) to mice. In addition, BEAS-2B cells were treated with 300 μg/mL of UPM 1648a for in vitro analysis. Intranasal administration of UPM 1648a increased lung injury score, macrophage infiltration, and upregulation of the inflammatory enzyme inducible nitric oxide synthase (iNOS) in lung tissues. On the other hand, oral administration of Pj-EE-CF (25, 50, and 100 mg/kg) alleviated these pathological features as assessed by lung wet/dry ratio, lung injury score, bronchoalveolar lavage fluid (BALF) protein amount in the lung tissues up to 70%, 95%, and 99%, respectively. In addition, Pj-EE-CF down-regulated the release of inflammatory cytokines, interleukins (ILs), tumor necrosis factor (TNF)-α, and interferon (IFN)-γ elevated by UPM 1648a in the lung tissues and lung BALF up to 95%. According to Western blot and luciferase assay, Pj-EE-CF (100 mg/kg in vivo or 50 and 100 μg/mL in vitro) significantly reduced the nuclear factor-κB (NF-κB) signal activated by UPM 1648a. Finally, UPM 1648a increased cellular reactive oxygen species (ROS) levels in BEAS-2B cells, while Pj-EE-CF reduced them. These results suggest that Pj-EE-CF alleviates UPM 1648a-induced lung damage via anti-inflammatory and antioxidant activities and by suppressing NF-κB signaling. In conclusion, these observations imply that Pj-EE-CF could be a practical component of food supplements to mitigate air pollution-derived lung damage.
Collapse
|
3
|
Selim J, Hamzaoui M, Boukhalfa I, Djerada Z, Chevalier L, Piton N, Genty D, Besnier E, Clavier T, Dumesnil A, Renet S, Mulder P, Doguet F, Tamion F, Veber B, Richard V, Baste JM. Cardiopulmonary bypass increases endothelial dysfunction after pulmonary ischaemia-reperfusion in an animal model. Eur J Cardiothorac Surg 2021; 59:1037-1047. [PMID: 33276375 DOI: 10.1093/ejcts/ezaa412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/06/2020] [Accepted: 10/18/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Endothelial dysfunction during ischaemia-reperfusion (IR) is a major cause of primary graft dysfunction during lung transplantation. The routine use of cardiopulmonary bypass (CPB) during lung transplantation remains controversial. However, the contribution of CPB to pulmonary endothelial dysfunction remains unclear. The objective was to investigate the impact of CPB on endothelial dysfunction in a lung IR rat model. METHODS Rats were allocated to 4 groups: (i) Sham, (ii) IR, (iii) CPB and (iv) IR-CPB. The primary outcome was the study of pulmonary vascular reactivity by wire myograph. We also assessed glycocalyx degradation by enzyme-linked immunosorbent assay and electron microscopy and both systemic and pulmonary inflammation by enzyme-linked immunosorbent assay and immunohistochemistry. Rats were exposed to 45 min of CPB and IR. We used a CPB model allowing femoro-femoral support with left pulmonary hilum ischaemia for IR. RESULTS Pulmonary endothelium-dependent relaxation to acetylcholine was markedly reduced in the IR-CPB group (10.7 ± 9.1%) compared to the IR group (50.5 ± 5.2%, P < 0.001), the CPB group (54.1 ± 4.7%, P < 0.001) and the sham group (80.8 ± 6.7%, P < 0.001), suggesting that the association of pulmonary IR and CPB increases endothelial dysfunction. In IR-CPB, IR and CPB groups, vasorelaxation was completely abolished when inhibiting nitric oxide synthase, suggesting that this relaxation process was mainly mediated by nitric oxide. We observed higher syndecan-1 plasma levels in the IR-CPB group in comparison with the other groups, reflecting an increased degradation of glycocalyx. We also observed higher systemic inflammation in the IR-CPB group as shown by the increased plasma levels of IL-1β, IL-10. CONCLUSIONS CPB significantly increased the IR-mediated effects on pulmonary endothelial dysfunction. Therefore, the use of CPB during lung transplantation could be deleterious, by increasing endothelial dysfunction.
Collapse
Affiliation(s)
- Jean Selim
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France.,Rouen University Hospital, Department of Anaesthesia and Critical Care, Rouen, France
| | | | | | | | | | - Nicolas Piton
- Rouen University Hospital, Department of Pathology, Rouen, France
| | - Damien Genty
- Rouen University Hospital, Department of Pathology, Rouen, France
| | - Emmanuel Besnier
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France.,Rouen University Hospital, Department of Anaesthesia and Critical Care, Rouen, France
| | - Thomas Clavier
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France.,Rouen University Hospital, Department of Anaesthesia and Critical Care, Rouen, France
| | | | | | - Paul Mulder
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France
| | - Fabien Doguet
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France
| | | | - Benoît Veber
- Rouen University Hospital, Department of Anaesthesia and Critical Care, Rouen, France
| | | | - Jean-Marc Baste
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France.,Rouen University Hospital, Department of Thoracic Surgery, Rouen, France
| |
Collapse
|
4
|
Tanwar V, Katapadi A, Adelstein JM, Grimmer JA, Wold LE. Cardiac pathophysiology in response to environmental stress: a current review. CURRENT OPINION IN PHYSIOLOGY 2017; 1:198-205. [PMID: 29552675 DOI: 10.1016/j.cophys.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose Environmental stressors are disturbing our ecosystem at an accelerating rate. An increasingly relevant stressor are air pollutants, whose levels are increasing worldwide with threats to human health. These air pollutants are associated with increased mortality and morbidity from cardiovascular diseases. In this review we discuss environmental stressors focusing mainly on the various types of air pollutants, their short-term and long-term cardiovascular effects, and providing the epidemiological evidence associated with adverse cardiovascular outcomes. Direct and indirect pathophysiological mechanisms are also linked with cardiovascular complications such as thrombosis, fibrinolysis, hypertension, ischemic heart diseases and arrhythmias. RESULTS Evidence to date suggests that humans are constantly being exposed to unhealthy levels of environmental toxicants with the potential of serious health conditions. Environmental stressors adversely affect the cardiovascular system and pose an increased risk for cardiovascular diseases for those who reside in highly polluted areas. CONCLUSION People with existing risk factors and those with established cardiovascular disease have increased susceptibility to environmental stressors. The literature reviewed in this article thus support public health policies aimed at reducing pollutant exposure to benefit public health.
Collapse
Affiliation(s)
- Vineeta Tanwar
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH.,College of Nursing, The Ohio State University, Columbus, OH
| | - Aashish Katapadi
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jeremy M Adelstein
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH
| | - Jacob A Grimmer
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH.,College of Nursing, The Ohio State University, Columbus, OH.,Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
5
|
Paeoniflorin inhibits VSMCs proliferation and migration by arresting cell cycle and activating HO-1 through MAPKs and NF-κB pathway. Int Immunopharmacol 2017; 54:103-111. [PMID: 29121532 DOI: 10.1016/j.intimp.2017.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 11/22/2022]
Abstract
The proliferation, migration and inflammation of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis and progression of atherosclerosis. Paeoniflorin (PF) as active compound in the Rhizoma Atractylodes macrocephala has been used for various diseases like cancer, splenic asthenia, anaphylaxis and anorexia. This study aimed to explore whether and how PF regulated the inflammation, proliferation and migration of VSMCs under ox-LDL stimulation. Here, we found that PF dose-dependently inhibited ox-LDL-induced VSMCs proliferation and migration, and decreased inflammatory cytokines and chemokine overexpression. Mechanistically, PF prevented p38, ERK1/2 and NF-κB phosphorylation, and arrested cell cycle in S phase. Meanwhile, PF regulated the HO-1 and PCNA expression. Furthermore, PF blocked the foam cell formation in macrophages induced by ox-LDL. These results indicate that PF antagonizes the ox-LDL-induced VSMCs proliferation, migration and inflammation through activation of HO-1, cell cycle arrest and then suppression of p38, ERK1/2/MAPK and NF-κB signaling pathways.
Collapse
|
6
|
Deweirdt J, Quignard JF, Crobeddu B, Baeza-Squiban A, Sciare J, Courtois A, Lacomme S, Gontier E, Muller B, Savineau JP, Marthan R, Guibert C, Baudrimont I. Involvement of oxidative stress and calcium signaling in airborne particulate matter - induced damages in human pulmonary artery endothelial cells. Toxicol In Vitro 2017; 45:340-350. [PMID: 28688989 DOI: 10.1016/j.tiv.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 11/30/2022]
Abstract
Recent studies have revealed that particulate matter (PM) exert deleterious effects on vascular function. Pulmonary artery endothelial cells (HPAEC), which are involved in the vasomotricity regulation, can be a direct target of inhaled particles. Modifications in calcium homeostasis and oxidative stress are critical events involved in the physiopathology of vascular diseases. The objectives of this study were to assess the effects of PM2.5 on oxidative stress and calcium signaling in HPAEC. Different endpoints were studied, (i) intrinsic and intracellular production of reactive oxygen species (ROS) by the H2DCF-DA probe, (ii) intrinsic, intracellular and mitochondrial production of superoxide anion (O2-) by electronic paramagnetic resonance spectroscopy and MitoSOX probe, (iii) reactive nitrosative species (RNS) production by Griess reaction, and (vi) calcium signaling by the Fluo-4 probe. In acellular conditions, PM2.5 leads to an intrinsic free radical production (ROS, O2-) and a 4h-exposure to PM2.5 (5-15μg/cm2), induced, in HPAEC, an increase of RNS, of global ROS and of cytoplasmic and mitochondrial O2- levels. The basal intracellular calcium ion level [Ca2+]i was also increased after 4h-exposure to PM2.5 and a pre-treatment with superoxide dismutase and catalase significantly reduced this response. This study provides evidence that the alteration of intracellular calcium homeostasis induced by PM2.5 is closely correlated to an increase of oxidative stress.
Collapse
Affiliation(s)
- J Deweirdt
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - J F Quignard
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - B Crobeddu
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - A Baeza-Squiban
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - J Sciare
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS, Centre de Saclay, F-91190 Gif sur Yvette, France; Energy Environment Water Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| | - A Courtois
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Centre AntiPoison et de Toxicovigilance d'Aquitaine et de Poitou Charente et Service d'Exploration Fonctionnelle Respiratoire, Place Amélie Raba Léon, Bordeaux F-33076, France
| | - S Lacomme
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Pôle d'imagerie électronique, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - E Gontier
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Pôle d'imagerie électronique, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - B Muller
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - J P Savineau
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - R Marthan
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Centre AntiPoison et de Toxicovigilance d'Aquitaine et de Poitou Charente et Service d'Exploration Fonctionnelle Respiratoire, Place Amélie Raba Léon, Bordeaux F-33076, France
| | - C Guibert
- Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - I Baudrimont
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France.
| |
Collapse
|