1
|
Xi B, An X, Yue Y, Shen H, Han G, Yang Y, Zhao S. Identification and profiling of microRNAs during sheep's testicular development. Front Vet Sci 2025; 12:1538990. [PMID: 40230794 PMCID: PMC11994653 DOI: 10.3389/fvets.2025.1538990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/06/2025] [Indexed: 04/16/2025] Open
Abstract
The normal development of the testis is essential for male reproduction, as it is the site of sperm production and a prerequisite for spermatogenesis. MiRNAs play crucial roles in various testicular biological processes, including cell proliferation, spermatogenesis, hormone secretion, metabolism, and reproductive regulation. In this study, we utilized deep sequencing data to analyze the expression patterns of small RNAs in testicular tissues of Southern × Hu sheep F1 hybrids at 0, 3, 6 months, and 1 year of age, thereby exploring the functions of miRNAs in testicular development and spermatogenesis. A total of 787 known miRNAs and 415 novel miRNAs were identified. We identified 217, 254, 405, 130, 305, and 138 DE miRNAs in the testes of M0 vs. M3, M0 vs. M6, M0 vs. Y1, M3 vs. M6, M3 vs. Y1, and M6 vs. Y1, respectively. GO annotation and KEGG pathway analysis of DE miRNA target genes revealed that target genes such as YAP1, ITGB1, DOT1L, SMAD4, and SOX9 may be involved in various biological processes, including reproductive pathways such as FOXO, Hippo, Wnt, cAMP, Rap1, and MAPK signaling pathways. The expression levels of 12 randomly selected miRNAs in testes at 0, 3, 6 months, and 1 year of age were detected by qRT-PCR, and the results were consistent with the sequencing data. This study characterized and investigated the differential expression of miRNAs in sheep testes at different developmental stages using deep sequencing technology. These findings will contribute to a deeper understanding of the functions of miRNAs in regulating testicular development and enhancing reproductive performance in male sheep.
Collapse
Affiliation(s)
- Binpeng Xi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haimiao Shen
- Dongxiang County Mutton Sheep Industry Research Center, Linxia, China
| | - Gaohui Han
- Dongxiang County Animal Husbandry Development Center, Linxia, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Chuang YT, Yen CY, Chien TM, Chang FR, Wu KC, Tsai YH, Shiau JP, Chang HW. Natural products modulate phthalate-associated miRNAs and targets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117015. [PMID: 39265265 DOI: 10.1016/j.ecoenv.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Phthalates are widespread and commonly used plasticizers that lead to adverse health effects. Several natural products provide a protective effect against phthalates. Moreover, microRNAs (miRNAs) are regulated by natural products and phthalates. Therefore, miRNAs' impacts and potential targets may underlie the mechanism of phthalates. However, the relationship between phthalate-modulated miRNAs and phthalate protectors derived from natural products is poorly understood and requires further supporting information. In this paper, we review the adverse effects and potential targets of phthalates on reproductive systems as well as cancer and non-cancer responses. Information on natural products that attenuate the adverse effects of phthalates is retrieved through a search of Google Scholar and the miRDB database. Moreover, information on miRNAs that are upregulated or downregulated in response to phthalates is collected, along with their potential targets. The interplay between phthalate-modulated miRNAs and natural products is established. Overall, this review proposes a straightforward pathway showing how phthalates modulate different miRNAs and targets and cause adverse effects, which are partly attenuated by several natural products, thereby providing a direction for investigating the natural product-miRNA-target axis against phthalate-induced effects.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung 900392, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan.
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
3
|
Yan Q, Wang Q, Zhang Y, Yuan L, Hu J, Zhao X. The Novel-m0230-3p miRNA Modulates the CSF1/CSF1R/Ras Pathway to Regulate the Cell Tight Junctions and Blood-Testis Barrier in Yak. Cells 2024; 13:1304. [PMID: 39120333 PMCID: PMC11311379 DOI: 10.3390/cells13151304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The yak (Bos grunniens) is a valuable livestock animal endemic to the Qinghai-Tibet Plateau in China with low reproductive rates. Cryptorchidism is one of the primary causes of infertility in male yaks. Compared with normal testes, the tight junctions (TJs) of Sertoli cells (SCs) and the integrity of the blood-testis barrier (BTB) in cryptorchidism are both disrupted. MicroRNAs are hairpin-derived RNAs of about 19-25 nucleotides in length and are involved in a variety of biological processes. Numerous studies have shown the involvement of microRNAs in the reproductive physiology of yak. In this study, we executed RNA sequencing (RNA-seq) to describe the expression profiles of mRNAs and microRNAs in yaks with normal testes and cryptorchidism to identify differentially expressed genes. GO and KEGG analyses were used to identify the biological processes and signaling pathways which the target genes of the differentially expressed microRNAs primarily engaged. It was found that novel-m0230-3p is an important miRNA that significantly differentiates between cryptorchidism and normal testes, and it is down-regulated in cryptorchidism with p < 0.05. Novel-m0230-3p and its target gene CSF1 both significantly contribute to the regulation of cell adhesion and tight junctions. The binding sites of novel-m0230-3p with CSF1 were validated by a dual luciferase reporter system. Then, mimics and inhibitors of novel-m0230-3p were transfected in vitro into SCs, respectively. A further analysis using qRT-PCR, immunofluorescence (IF), and Western blotting confirmed that the expression of cell adhesion and tight-junction-related proteins Occludin and ZO-1 both showed changes. Specifically, both the mRNA and protein expression levels of Occludin and ZO-1 in SCs decreased after transfection with the novel-m0230-3p mimics, while they increased after transfection with the inhibitors, with p < 0.05. These were achieved via the CSF1/CSF1R/Ras signaling pathway. In summary, our findings indicate a negative miRNA-mRNA regulatory network involving the CSF1/CSF1R/Ras signaling pathway in yak SCs. These results provide new insights into the molecular mechanisms of CSF1 and suggest that novel-m0230-3p and its target protein CSF1 could be used as potential therapeutic targets for yak cryptorchidism.
Collapse
Affiliation(s)
- Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Y.Z.); (L.Y.); (J.H.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
4
|
Zhang T, Zhao F, Hu Y, Wei J, Cui F, Lin Y, Jin Y, Sheng X. Environmental monobutyl phthalate exposure promotes liver cancer via reprogrammed cholesterol metabolism and activation of the IRE1α-XBP1s pathway. Oncogene 2024; 43:2355-2370. [PMID: 38879588 DOI: 10.1038/s41388-024-03086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/21/2024]
Abstract
Humans are widely exposed to phthalates, a major chemical plasticizer that accumulates in the liver. However, little is known about the impact of chronic phthalate exposure on liver cancer development. In this study, we applied a long-term cell culture model by treating the liver cancer cell HepG2 and normal hepatocyte L02 to environmental dosage of monobutyl phthalate (MBP), the main metabolite of phthalates. Interestingly, we found that long-term MBP exposure significantly accelerated the growth of HepG2 cells in vitro and in vivo, but barely altered the function of L02 cells. MBP exposure triggered reprogramming of lipid metabolism in HepG2 cells, where cholesterol accumulation subsequently activated the IRE1α-XBP1s axis of the unfolded protein response. As a result, the XBP1s-regulated gene sets and pathways contributed to the increased aggressiveness of HepG2 cells. In addition, we also showed that MBP-induced cholesterol accumulation fostered an immunosuppressive microenvironment by promoting tumor-associated macrophage polarization toward the M2 type. Together, these results suggest that environmental phthalates exposure may facilitate liver cancer progression, and alerts phthalates exposure to patients who already harbor liver tumors.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Faming Zhao
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanxia Hu
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jinlan Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengzhen Cui
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yahang Lin
- Department of Neurology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Yang Jin
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway
| | - Xia Sheng
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China.
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Changes in microRNA expression profiles in diabetic cardiomyopathy rats following H3 relaxin treatment. J Cardiovasc Pharmacol 2021; 79:530-538. [PMID: 34983906 DOI: 10.1097/fjc.0000000000001211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT MicroRNAs (miRNAs) are noncoding RNAs that play an important role in the mechanisms of diabetic cardiomyopathy (DCM); however, whether human recombinant relaxin-3 (H3 relaxin) inhibits myocardial injury in DCM rats and the underlying mechanisms involving miRNAs remain unknown. miRNA expression profiles were detected using miRNA microarray and bioinformatics analyses of myocardial tissues from control, DCM, and H3 relaxin-administered DCM groups, and the regulatory mechanisms of the miRNAs were investigated. A total of five miRNAs were downregulated in the myocardial tissues of DCM rats and upregulated in H3 relaxin-treated DCM rats, and one miRNA (miRNA let-7d-3p) was increased in the myocardial tissue of DCM rats, and decreased in H3 relaxin-treated DCM rats as revealed by miRNA microarray and validated by real-time PCR. Important signaling pathways were found to be triggered by the differentially expressed miRNAs, including metabolism, cancer, Rap1, PI3K-Akt, and MAPK signaling pathways. The study revealed that H3 relaxin improved glucose uptake in DCM rats, potentially via regulation of miRNA let-7d-3p.
Collapse
|
6
|
Leng Y, Ren L, Niu S, Zhang T, Zhang J. In vitro and in silico investigations of endocrine disruption induced by metabolites of plasticizers through glucocorticoid receptor. Food Chem Toxicol 2021; 155:112413. [PMID: 34273429 DOI: 10.1016/j.fct.2021.112413] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
The endocrine disruptive capability of plasticizers to activate nuclear receptors has attracted great interest. This study is aimed to assess the potential glucocorticoid effects of metabolites of plasticizers. The effects of metabolites of plasticizers on the transcriptional activity of glucocorticoid receptor (GR) were investigated using reporter gene assays. All of them failed to exhibit agonistic/antagonistic effects on GR. However, a combination of dexamethasone and monobutyl phthalate (MBP) could synergistically activate GR. MBP combined with dexamethasone also enhanced GR nuclear translocation by Western blot, while mifepristone restrained GR cytoplasmic-to-nuclear translocation. MBP co-treated with dexamethasone resulted in synergistic induction of PEPCK and MKP-1 gene expression by real-time PCR and PEPCK protein level by Western blot. Furthermore, the carboxyl and ester groups of MBP have influences on the charge distribution of MBP, leading to change of electrostatic interactions between MBP and GR by calculations on electronic properties. Both hydrophobic and hydrogen bonding interactions play a crucial role in the stabilization between MBP and GR conducted by molecular docking and dynamics simulation. This work confirms that GR could remain stable upon binding to MBP. In conclusion, dexamethasone and MBP could synergistically activate GR, resulting in synergetic enhancement of subsequent GR-mediated endocrine disrupting effect.
Collapse
Affiliation(s)
- Yue Leng
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shu Niu
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
7
|
Ferrante M, Cristaldi A, Oliveri Conti G. Oncogenic Role of miRNA in Environmental Exposure to Plasticizers: A Systematic Review. J Pers Med 2021; 11:jpm11060500. [PMID: 34199666 PMCID: PMC8229109 DOI: 10.3390/jpm11060500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
The daily environmental exposure of humans to plasticizers may adversely affect human health, representing a global issue. The altered expression of microRNAs (miRNAs) plays an important pathogenic role in exposure to plasticizers. This systematic review summarizes recent findings showing the modified expression of miRNAs in cancer due to exposure to plasticizers. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we performed a systematic review of the literature published in the past 10 years, focusing on the relationship between plasticizer exposure and the expression of miRNAs related to cancer. Starting with 535 records, 17 articles were included. The results support the hypothesis that exposure to plasticizers causes changes in or the deregulation of a number of oncogenic miRNAs and show that the interaction of plasticizers with several redundant miRNAs, such as let-7f, let-7g, miR-125b, miR-134, miR-146a, miR-22, miR-192, miR-222, miR-26a, miR-26b, miR-27b, miR-296, miR-324, miR-335, miR-122, miR-23b, miR-200, miR-29a, and miR-21, might induce deep alterations. These genotoxic and oncogenic responses can eventually lead to abnormal cell signaling pathways and metabolic changes that participate in many overlapping cellular processes, and the evaluation of miRNA-level changes can be a useful target for the toxicological assessment of environmental pollutants, including plastic additives and plasticizers.
Collapse
Affiliation(s)
- Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
- Catania, Messina, Enna Cancer Registry, Via S. Sofia 87, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-378-2181; Fax: +39-095-378-2177
| | - Antonio Cristaldi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
| |
Collapse
|
8
|
Luo H, Peng F, Weng B, Tang X, Chen Y, Yang A, Chen B, Ran M. miR-222 Suppresses Immature Porcine Sertoli Cell Growth by Targeting the GRB10 Gene Through Inactivating the PI3K/AKT Signaling Pathway. Front Genet 2020; 11:581593. [PMID: 33329720 PMCID: PMC7673446 DOI: 10.3389/fgene.2020.581593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 01/24/2023] Open
Abstract
Sertoli cells are central and essential coordinators of spermatogenesis. Accumulating evidence has demonstrated that miRNAs participate in the regulation of Sertoli cell growth. However, the functions and the regulatory mechanisms of miRNAs in Sertoli cells of domestic animals remain largely unknown. Here we report that miR-222 overexpression repressed cell cycle progression and proliferation and promoted the apoptosis of immature porcine Sertoli cells, whereas miR-222 inhibition resulted in the opposite result. miR-222 directly targeted the 3′-UTR of the GRB10 gene and inhibited its mRNA abundance. An siRNA-induced GRB10 knockdown showed similar effects as did miR-222 overexpression on cell proliferation and apoptosis and further attenuated the role of miR-222 inhibition. Furthermore, both miR-222 overexpression and GRB10 inhibition repressed the phosphorylation of PI3K and AKT, the key elements of the PI3K/AKT signaling pathway, whereas GRB10 inhibition offsets the effects of the miR-222 knockdown. Overall, we concluded that miR-222 suppresses immature porcine Sertoli cell growth by targeting the GRB10 gene through inactivation of the PI3K/AKT signaling pathway. This study provides novel insights into the epigenetic regulation of porcine spermatogenesis by determining the fate of Sertoli cells.
Collapse
Affiliation(s)
- Hui Luo
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Fuzhi Peng
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Bo Weng
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Yao Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Anqi Yang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Maoliang Ran
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| |
Collapse
|
9
|
Ma T, Hou J, Zhou Y, Chen Y, Qiu J, Wu J, Ding J, Han X, Li D. Dibutyl phthalate promotes juvenile Sertoli cell proliferation by decreasing the levels of the E3 ubiquitin ligase Pellino 2. Environ Health 2020; 19:87. [PMID: 32738922 PMCID: PMC7395429 DOI: 10.1186/s12940-020-00639-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/27/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND A previous study showed that dibutyl phthalate (DBP) exposure disrupted the growth of testicular Sertoli cells (SCs). In the present study, we aimed to investigate the potential mechanism by which DBP promotes juvenile SC proliferation in vivo and in vitro. METHODS Timed pregnant BALB/c mice were exposed to vehicle, or DBP (50, 250, and 500 mg/kg/day) from 12.5 days of gestation until delivery. In vitro, CCK-8 and EdU incorporation assays were performed to determine the effect of monobutyl phthalate (MBP), the active metabolite of DBP, on the proliferation of TM4 cells, which are a juvenile testicular SC cell line. Western blotting analysis, quantitative PCR (q-PCR), and flow cytometry were performed to analyse the expression of genes and proteins related to the proliferation and apoptosis of TM4 cells. Coimmunoprecipitation was used to determine the relationship between the ubiquitination of interleukin 1 receptor-associated kinase 1 (IRAK1) and the effect of MBP on promoting the proliferation of TM4 cells. RESULTS In the 50 mg/kg/day DBP-exposed male mice offspring, the number of SCs was significantly increased. Consistent with the in vivo results, in vitro experiments revealed that 0.1 mM MBP treatment promoted the proliferation of TM4 cells. Furthermore, the data showed that 0.1 mM MBP-mediated downregulation of the E3 ubiquitin ligase Pellino 2 (Peli2) increased ubiquitination of IRAK1 by K63, which activated MAPK/JNK signalling, leading to the proliferation of TM4 cells. CONCLUSIONS Prenatal exposure to DBP led to abnormal proliferation of SCs in prepubertal mice by affecting ubiquitination of the key proliferation-related protein IRAK1 via downregulation of Peli2.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yusheng Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiayin Qiu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
10
|
Xia Y, Ma T, Ji J, Zhang L, Wang Y, Wu J, Ding J, Han X, Li D. In utero exposure to DBP stimulates release of GnRH by increasing the secretion of PGE2 in the astrocytes of the hypothalamus in the offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110698. [PMID: 32388187 DOI: 10.1016/j.ecoenv.2020.110698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Di-n-butyl phthalate (DBP), the most commonly used plasticizer and typical endocrine disrupting chemicals (EDCs), has shown its characteristics of causing reproductive and developmental toxicity in males, while the neuroendocrine toxicity induced by DBP exposure in utero and the mechanism beneath still remain unclear. Here, the pregnant mice were treated with corn oil (control) or DBP at three different doses by oral gavage during gestational days (GD) 12.5-21.5. The results showed that in utero exposure to DBP induced a significant increase of gonadotropin releasing hormone (GnRH) content in serum, as well as activation and proliferation of astrocytes in the hypothalamus of offspring male mice on postnatal day (PND) 22. However, in in vitro study, mono-n-butyl phthalate (MBP), the metabolite of DBP, could not increase the release of GnRH after GnRH neurons were exposed to MBP. Further studies identified that MBP-mediated activation and proliferation of astrocytes resulted in increased secretion of prostaglandin E2 (PGE2), which might be responsible for the increased release of GnRH from GnRH neurons. This study highlights the neuroendocrine toxicity of current plasticizer DBP exposure, laying the foundation for identifying potential molecular targets for related diseases.
Collapse
Affiliation(s)
- Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Ji
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Liupan Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yu Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
11
|
Ma T, Zhou Y, Xia Y, Meng X, Jin H, Wang B, Chen Y, Qiu J, Wu J, Ding J, Han X, Li D. Maternal Exposure to Di- n-butyl Phthalate Promotes the Formation of Testicular Tight Junctions through Downregulation of NF-κB/COX-2/PGE 2/MMP-2 in Mouse Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8245-8258. [PMID: 32525310 DOI: 10.1021/acs.est.0c01701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previous studies demonstrated that maternal exposure to di-n-butyl phthalate (DBP) resulted in developmental disorder of the male reproductive organ; however, the underlying mechanism has not been thoroughly elucidated to date. The present study was aimed to investigate the effects of maternal exposure to DBP on the formation of the Sertoli cell (SC)-based tight junctions (TJs) in the testes of male offspring mice and the underlying molecular mechanism. By observing the pathological structure and ultrastructure, permeability analysis of the testis of 22 day male offspring in vivo, and transepithelial electrical resistance measurement of inter-SCs in vitro, we found that the formation of TJs between SCs in offspring mice was accelerated, which was paralleled by the accumulation of TJ protein occludin at 50 mg/kg/day DBP exposure in utero and 0.1 mM monobutyl phthalate (MBP, the active metabolite of DBP) in vitro. Our in vitro results demonstrated that 0.1 mM MBP downregulated the expression of matrix metalloproteinase-2 (MMP-2) by inhibiting the activation of nuclear factor-κB (NF-κB)/cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) cascades via attenuated binding of NF-κB to both the MMP-2 promoter and COX-2 promoter. Taken together, the data confirmed that maternal exposure to a relatively low dose of DBP promoted the formation of testicular TJs through downregulation of NF-κB/COX-2/PGE2/MMP-2, which might promote the development of the testis during puberty. Our findings may provide new perspectives for prenatal DBP exposure, which is a potential environmental contributor, leading to earlier puberty in male offspring mice.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Bo Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yusheng Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiayin Qiu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
12
|
Zhou Y, Ma T, Yan M, Meng X, Wu J, Ding J, Han X, Li D. Exposure of DBP in gestation induces inflammation of testicular Sertoli cells in progeny by activating NLRP3 inflammasomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136139. [PMID: 31863983 DOI: 10.1016/j.scitotenv.2019.136139] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/22/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Di-n-butyl phthalate (DBP), as one of the environmental chemicals, can cause male reproductive decline including testicular hypoplasia and impairments of spermatogenesis. Testicular inflammation is positively related to decline in male reproductive function. However, whether exposure to DBP in utero can cause testicular inflammation in progeny has not been studied. In this study, we established an animal model and observed that DBP exposure during gestation induced testicular inflammation in progeny with the increased expression of pro-inflammatory cytokines and chemokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1) and CXC chemokine ligand-10 (CXCL-10), representing the activation of the nuclear factor kappa B (NF-κB). However, NF-κB was activated within 1 h in Sertoli cells (SCs) when exposed to MBP (a metabolite of DBP) in vitro. Meanwhile, we detected increased expression of inflammatory NLR family pyrin domain containing 3 (NLRP3), resulting from Pellino2-mediated NLRP3 inflammasome priming. Further, we confirmed that the activation of the NLRP3/caspase-1/IL-1β canonical inflammasome pathway induced secretion of inflammatory factors of SCs and immune response, and INF39 (an inhibitor of NLRP3) could inhibit the inflammation in vitro. Collectively, these findings indicated that NLRP3 inflammasomes played key roles in DBP-induced inflammation in testicular SCs.
Collapse
Affiliation(s)
- Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
13
|
Caporossi L, Alteri A, Campo G, Paci E, Tranfo G, Capanna S, Papaleo E, Pigini D, Viganò P, Papaleo B. Cross Sectional Study on Exposure to BPA and Phthalates and Semen Parameters in Men Attending a Fertility Center. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020489. [PMID: 31940982 PMCID: PMC7013870 DOI: 10.3390/ijerph17020489] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Among the possible risk factors for male reproduction, exposure to phthalates and alkylphenols is widely documented. This study evaluated the possible association between chemical exposure and the quality of the seminal fluid of 105 subjects in a fertility clinic. The urinary levels of seven phthalate metabolites (monoethylphthalate, MEP; monobenzylphthalate, MBzP; mono n-butylphthalate, MnBP; mono-(2-ethylhexyl) phthalate, MEHP; mono(2-ethyl-5-hydroxyhexyl) phthalate, MEHHP; mono-n-octylphthalate, MnOP; mono-isononylphthalate, MiNP) and bisphenol A (BPA), were analysed by high performance liquid chromatography/tandem mass spectrometry HPLC/MS/MS. The regression analysis showed that the semen volume was positively associated with MnBP, MnOP and BPA levels while was negatively associated with MiNP levels. The sperm concentration had a significant inverse relationship with MEP levels. A negative association was found between the use of plastic containers for food storage (p = 0.037) and semen volume (3.06 vs. 2.30 mL as average values, never vs daily). A significant positive correlation emerged (p < 0.005) between the consumption of canned food and the levels of BPA (2.81 vs. 0.14 µg/g creat as average values, daily vs. never) and between the use of perfumes and levels of MEP (389.86 vs. 48.68 µg/g creat, as average values, daily vs. never). No further statistically significant associations were found, even considering the working activity. Some evidence emerged about the possible link between exposure and seminal fluid quality: further case/control or prospective studies will allow us to confirm this causality hypothesis.
Collapse
Affiliation(s)
- Lidia Caporossi
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
- Correspondence:
| | - Alessandra Alteri
- Unit of Obstetrics and Gynecology, San Raffaele Scientific Institute, 20132 Milan, Italy; (A.A.); (G.C.); (E.P.)
| | - Giovanni Campo
- Unit of Obstetrics and Gynecology, San Raffaele Scientific Institute, 20132 Milan, Italy; (A.A.); (G.C.); (E.P.)
| | - Enrico Paci
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
| | - Giovanna Tranfo
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
| | - Silvia Capanna
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
| | - Enrico Papaleo
- Unit of Obstetrics and Gynecology, San Raffaele Scientific Institute, 20132 Milan, Italy; (A.A.); (G.C.); (E.P.)
| | - Daniela Pigini
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Bruno Papaleo
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
| |
Collapse
|
14
|
Meroni SB, Galardo MN, Rindone G, Gorga A, Riera MF, Cigorraga SB. Molecular Mechanisms and Signaling Pathways Involved in Sertoli Cell Proliferation. Front Endocrinol (Lausanne) 2019; 10:224. [PMID: 31040821 PMCID: PMC6476933 DOI: 10.3389/fendo.2019.00224] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sertoli cells are somatic cells present in seminiferous tubules which have essential roles in regulating spermatogenesis. Considering that each Sertoli cell is able to support a limited number of germ cells, the final number of Sertoli cells reached during the proliferative period determines sperm production capacity. Only immature Sertoli cells, which have not established the blood-testis barrier, proliferate. A number of hormonal cues regulate Sertoli cell proliferation. Among them, FSH, the insulin family of growth factors, activin, and cytokines action must be highlighted. It has been demonstrated that cAMP/PKA, ERK1/2, PI3K/Akt, and mTORC1/p70SK6 pathways are the main signal transduction pathways involved in Sertoli cell proliferation. Additionally, c-Myc and hypoxia inducible factor are transcription factors which participate in the induction by FSH of various genes of relevance in cell cycle progression. Cessation of proliferation is a pre-requisite to Sertoli cell maturation accompanied by the establishment of the blood-testis barrier. With respect to this barrier, the participation of androgens, estrogens, thyroid hormones, retinoic acid and opioids has been reported. Additionally, two central enzymes that are involved in sensing cell energy status have been associated with the suppression of Sertoli cell proliferation, namely AMPK and Sirtuin 1 (SIRT1). Among the molecular mechanisms involved in the cessation of proliferation and in the maturation of Sertoli cells, it is worth mentioning the up-regulation of the cell cycle inhibitors p21Cip1, p27Kip, and p19INK4, and of the gap junction protein connexin 43. A decrease in Sertoli cell proliferation due to administration of certain therapeutic drugs and exposure to xenobiotic agents before puberty has been experimentally demonstrated. This review focuses on the hormones, locally produced factors, signal transduction pathways, and molecular mechanisms controlling Sertoli cell proliferation and maturation. The comprehension of how the final number of Sertoli cells in adulthood is established constitutes a pre-requisite to understand the underlying causes responsible for the progressive decrease in sperm production that has been observed during the last 50 years in humans.
Collapse
|
15
|
Zhang H, Hua Y, Chen J, Li X, Bai X, Wang H. Organism-derived phthalate derivatives as bioactive natural products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:125-144. [PMID: 30444179 DOI: 10.1080/10590501.2018.1490512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phthalates are widely used in polymer materials as a plasticizer. These compounds possess potent toxic variations depending on their chemical structures. However, a growing body of evidence indicates that phthalate compounds are undoubtedly discovered in secondary metabolites of organisms, including plants, animals and microorganisms. This review firstly summarizes biological sources of various phthalates and their bioactivities reported during the past few decades as well as their environmental toxicities and public health risks. It suggests that these organisms are one of important sources of natural phthalates with diverse profiles of bioactivity and toxicity.
Collapse
Affiliation(s)
- Huawei Zhang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Yi Hua
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Jianwei Chen
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Xiuting Li
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing , China
| | - Xuelian Bai
- c College of Life and Environmental Sciences , Hangzhou Normal University , Hangzhou , China
| | - Hong Wang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| |
Collapse
|