1
|
Li F, Xiong W, Zhang C, Wang D, Zhou C, Li W, Zeng G, Song B, Zeng Z. Neonicotinoid insecticides in non-target organisms: Occurrence, exposure, toxicity, and human health risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125432. [PMID: 40279746 DOI: 10.1016/j.jenvman.2025.125432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Pesticides have consistently portrayed a crucial role in the history of modern agricultural production. Neonicotinoid insecticides are classified as the fourth generation of pesticides, following organophosphorus, pyrethroids, and carbamates. Due to their broad-spectrum insecticidal activity, unique neurotoxic mode of action, and versatility of application methods, neonicotinoids have been widely used worldwide since their introduction. Recent studies have shown that neonicotinoids are frequently detected in a variety of food and environmental media around the world, posing considerable safety risks to human health and ecosystems, and therefore have become an emerging contaminant. However, the toxic effects and exposure risks of neonicotinoids to non-target organisms, including humans, have not received sufficient attention. Therefore, based on previous studies, this critical review concisely evaluates the occurrence and exposure levels of neonicotinoids in the environment and the associated risks to human health. The toxic effects of neonicotinoids on non-target organisms are systematically reviewed, including the aspects of acute toxicity, reproductive development, nervous system, immune function, genetics, and others. The potential toxic mechanism of these pesticides is discussed. The existing knowledge gaps are identified, and future prospects for neonicotinoids are proposed to provide scientific guidance for the safe and rational use of neonicotinoids and future research directions.
Collapse
Affiliation(s)
- Fang Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Wenbin Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
| |
Collapse
|
2
|
Li Z, Liang Y, Wang Y, Lin Y, Zeng L, Zhang Y, Zhu L. Zuogui Pills alleviate cyclophosphamide-induced ovarian aging by reducing oxidative stress and restoring the stemness of oogonial stem cells through the Nrf2/HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118505. [PMID: 38945466 DOI: 10.1016/j.jep.2024.118505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuogui Pill (ZGP) is a traditional herbal formula of Chinese Medicine with a long history of use in alleviating ovarian aging. AIM OF THE STUDY To examine the impact of ZGP on oxidative stress and the stemness of oogonial stem cells (OSCs) in cyclophosphamide (CTX)-induced ovarian aging, as well as its molecular mechanisms involving the nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2)/heme oxygenase-1 (HO-1, Hmox1) pathway. MATERIALS AND METHODS Female Sprague-Dawley (SD) rats were randomly divided into seven groups: control, model (CTX), estradiol valerate (EV, 0.103 mg/kg), ZGP-L (low dose Zuogui Pill, 1.851 g/kg), ZGP-H (high dose Zuogui Pill, 3.702 g/kg), ML385 (30 mg/kg), and ML385+ZGP-L. After CTX modeling, the EV, ZGP-L, ZGP-H, and ML385+ZGP-L groups were treated by gavage for 8 weeks, while the ML385 and ML385+ZGP-L groups were administered the Nrf2 antagonist ML385 twice a week. OSCs were isolated after modeling and then treated with drug serum containing 10% ZGP or 10 μM ML385. The general conditions of the rats, including body weight, ovarian weight/body weight ratio, and estrous cycle, were observed. Ovarian ultrastructure, follicle and corpus luteum counts were assessed via hematoxylin and eosin (H&E) staining. Serum hormone levels were measured using enzyme-linked immunosorbent assay (ELISA). Nrf2/HO-1 pathway, stem cell, germ cell, and cell cycle biomarkers were analyzed by qPCR and Western blot. Cell viability was assessed by cell counting kit-8 (CCK-8) assay. Oxidative stress biomarkers were evaluated using flow cytometry and assay kits. Immunofluorescence was employed to detect and locate OSCs in the ovary, quantify the average fluorescence intensity, and identify OSCs. RESULTS After ZGP treatment, rats with CTX-induced ovarian aging exhibited improved general condition, increased body weight, higher total ovarian weight to body weight ratio, and a restoration of the estrous cycle similar to the control group. Serum levels of estradiol (E2) and follicle stimulating hormone (FSH), two sex hormones, were also improved. Ovarian ultrastructure and follicle count at all stages showed improvement. Moreover, the viability and proliferation capacity of OSCs were enhanced following ZGP intervention. The Nrf2/HO-1 pathway was found to be down-regulated in CTX-induced aging ovarian OSCs. However, ZGP reversed this effect by activating the expression of Nrf2, HO-1, and NAD(P)H oxidoreductase 1 (NQO1), increasing the activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reducing the accumulation of malonaldehyde (MDA) and reactive oxygen species (ROS), thus restoring resistance to oxidative stress. Additionally, ZGP improved the cell cycle of OSCs, up-regulated the expression of Cyclin D1 and Cyclin E1, restored cell stemness, promoted proliferation, enhanced the expression of cell stemness markers octamer-binding transcription factor 4 (Oct4) and mouse VASA homolog (MVH), and down-regulated the expression of P21, thereby inhibiting apoptosis. The therapeutic effects of ZGP against oxidative stress and restoration of cell stemness were attenuated following inhibition of the Nrf2 signaling pathway using ML385. CONCLUSIONS ZGP protected against CTX-induced ovarian aging by restoring normal ovarian function, alleviating oxidative stress in aging OSCs, promoting OSCs proliferation, and restoring their stemness in rats, possibly through regulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Zuang Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yunyi Liang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yixuan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuewei Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lihua Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Rajabi-Toustani R, Hu Q, Wang S, Qiao H. How Do Environmental Toxicants Affect Oocyte Maturation Via Oxidative Stress? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:69-95. [PMID: 39030355 DOI: 10.1007/978-3-031-55163-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.
Collapse
Affiliation(s)
- Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qinan Hu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuangqi Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
| |
Collapse
|
4
|
Hirano T, Ikenaka Y, Nomiyama K, Honda M, Suzuki N, Hoshi N, Tabuchi Y. An adverse outcome pathway-based approach to assess the neurotoxicity by combined exposure to current-use pesticides. Toxicology 2023; 500:153687. [PMID: 38040083 DOI: 10.1016/j.tox.2023.153687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Exposure to multiple pesticides in daily life has become an important public health concern. However, the combined effects of pesticide mixtures have not been fully elucidated by the conventional toxicological testing used for individual chemicals. Grouping of chemicals by mode of action using common key events (KEs) in the adverse outcome pathway (AOP) as endpoints could be applied for efficient risk assessment of combined exposure to multiple chemicals. The purpose of this study was to investigate whether exposure to multiple pesticides has synergistic neurotoxic effects on mammalian nervous systems. According to the AOP-based approach, we evaluated the effects of 10 current-use pesticides (4 neonicotinoids, 4 pyrethroids and 2 phenylpyrazoles) on the common KEs in AOPs for neurotoxicity, such as KEs involving mitochondrial and proteolytic functions, in a mammalian neuronal cell model. Our data showed that several pyrethroids and phenylpyrazoles partly shared the effects on several common KEs, including decreases in mitochondrial membrane potential and proteasome activity and increases in autophagy activity. Furthermore, we also found that combined exposure to a type-I pyrethroid permethrin or a type-II pyrethroid deltamethrin and the phenylpyrazole fipronil decreased the cell viability and the benchmark doses much more than either single exposure, indicating that the pair exhibited synergistic effects, since the combination indexes were less than 1. These findings revealed that novel pairs of different classes of pesticides with similar effects on common KEs exhibited synergistic neurotoxicity and provide new insights into the risk assessment of combined exposure to multiple chemicals.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yoshinori Ikenaka
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; One Health Research Center, Hokkaido University,Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
5
|
El-Din MAEDS, Ghareeb AEWE, El-Garawani IM, El-Rahman HAA. Induction of apoptosis, oxidative stress, hormonal, and histological alterations in the reproductive system of thiamethoxam-exposed female rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:77917-77930. [PMID: 37266787 PMCID: PMC10299933 DOI: 10.1007/s11356-023-27743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
The present study aimed to investigate the oral toxic effects of 1/10 LD50 and 1/5 LD50 of thiamethoxam (TMX), a neonicotinoid insecticide, on the reproductive system of female Wistar rats. Thirty female rats were divided into three groups and supplied orally with either; saline solution, 1/10 LD50 of TMX (156 mg/kg) or 1/5 LD50 of TMX (312 mg/kg). The daily administration was extended for 30 days. Investigating the parameters of oxidative stress, hormonal levels, histopathological alterations, and the apoptotic markers (P53, BAX, BCL-2, and caspase-3) was performed in the uterus and ovary of rats. Results showed significant changes in the body weight gain, and relative weight of the left and right ovaries and uterus. Moreover, luteinizing hormone (LH), estradiol (ED), and progesterone (PG) serum levels were not significantly altered following TMX oral administration. The level of follicle-stimulating hormone in the TMX-exposed group (156 mg/kg) was significantly increased; however, a significant decrease was observed in TMX-exposed animals (312 mg/kg). TMX induced significant oxidative stress in exposed groups by reducing the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT), and elevating malondialdehyde (MDA) levels. Following hematoxylin and eosin staining, the microscopic examination revealed deteriorated luteal cells with vacuolation in the corpus luteum, a follicle containing a degenerated oocyte and degeneration/necrosis of the circular muscle layer with a high rate of apoptotic cells in TMX-exposed animals. TMX induced transcriptional alterations in apoptosis-related genes shifting towards the activation of the intrinsic apoptotic pathway. Collectively, results suggest the toxic effect of the TMX on the reproductive health of female Wistar rats.
Collapse
Affiliation(s)
| | | | - Islam M. El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt
| | | |
Collapse
|
6
|
Naeini SH, Mavaddatiyan L, Kalkhoran ZR, Taherkhani S, Talkhabi M. Alpha-ketoglutarate as a potent regulator for lifespan and healthspan: Evidences and perspectives. Exp Gerontol 2023; 175:112154. [PMID: 36934991 DOI: 10.1016/j.exger.2023.112154] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
Aging is a natural process that determined by a functional decline in cells and tissues as organisms are growing old, resulting in an increase at risk of disease and death. To this end, many efforts have been made to control aging and increase lifespan and healthspan. These efforts have led to the discovery of several anti-aging drugs and compounds such as rapamycin and metformin. Recently, alpha-ketoglutarate (AKG) has been introduced as a potential anti-aging metabolite that can control several functions in organisms, thereby increases longevity and improves healthspan. Unlike other synthetic anti-aging drugs, AKG is one of the metabolites of the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle, and synthesized in the body. It plays a crucial role in the cell energy metabolism, amino acid/protein synthesis, epigenetic regulation, stemness and differentiation, fertility and reproductive health, and cancer cell behaviors. AKG exerts its effects through different mechanisms such as inhibiting mTOR and ATP-synthase, modulating DNA and histone demethylation and reducing ROS formation. Herein, we summarize the recent findings of AKG-related lifespan and healthspan studies and discuss AKG associated cell and molecular mechanisms involved in increasing longevity, improving reproduction, and modulating stem cells and cancer cells behavior. We also discuss the promises and limitations of AKG for delaying aging and other potential applications.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Laleh Mavaddatiyan
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Rashid Kalkhoran
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Soroush Taherkhani
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
7
|
Jiang WJ, Sun MH, Li XH, Lee SH, Heo G, Zhou D, Cui XS. E2F4 regulates cell cycle to mediate embryonic development in pigs. Theriogenology 2023; 196:227-235. [PMID: 36427391 DOI: 10.1016/j.theriogenology.2022.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
In mammals, E2 factor (E2F) acts as a cell cycle regulator. E2F transcription factor 4 (E2F4) is a member of the E2F family of transcription factors and usually represents predominant E2F activity in cells. The E2F4 gene has been extensively studied in animals and is associated with multiple functions, such as cell cycle regulation and apoptosis; however, little is known about its role during embryonic development. In this study, we investigated the function of E2F4 and its mechanism of action in porcine embryo development. For this purpose, we knocked down E2F4 by microinjecting double-stranded RNA of E2F4 at the 1-cell stage. The results showed that E2F4 knockdown in porcine embryos led to a significant decrease in the blastocyst rate and total cell number. Defective E2F4 expression reduced the level of G1/S checkpoints (cyclin E-cyclin-dependent kinase 2) and cell cycle-related gene expression at the 4-cell embryo stage and blastocyst. Moreover, a decrease in E2F4 expression increased phosphorylated H2A.X variant histones and activated ataxia telangiectasia mutated (ATM) and p53-p21 pathway. In addition, E2F4 depletion caused a significant decrease in histone acetylation. Taken together, E2F4 plays a critical role as a transcriptional activator in the development of porcine embryos, an observation that contradicts its well-established role as a transcription repressor.
Collapse
Affiliation(s)
- Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
8
|
Neonicotinoids: mechanisms of systemic toxicity based on oxidative stress-mitochondrial damage. Arch Toxicol 2022; 96:1493-1520. [PMID: 35344072 DOI: 10.1007/s00204-022-03267-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 11/02/2022]
Abstract
Neonicotinoids are the most widely used pesticides in the world. However, research studies have shown that it can affect the cognitive abilities and health of non-target bees and other wild pollinators by inducing DNA damage, apoptosis and mitochondrial damage, injure to its central nervous system, and it is even developmentally neurotoxic to mammals and humans, with mitochondria being an important target of neonicotinoids. Therefore, this article reviews the role of mitochondrial morphology, calcium ions (Ca2+) homeostasis, respiratory function, apoptosis, and DNA damage in neonicotinoids-induced systemic toxicity. Additionally, it evaluates the protective effects of various active substances including vitamin C, N-acetylcysteine (NAC), curcumin (CUR), glutathione reduced (GSH), caffeic acid phenethyl ester (CAPE), resveratrol, and thymoquinone (TQ) on neonicotinoids-induced toxicity. This review manuscript found that mitochondria are important targets to neonicotinoids. Neonicotinoids can cause DNA damage, apoptosis, protein oxidation, and lipid peroxidation in non-target organisms by altering mitochondrial Ca2+ homeostasis, inhibiting mitochondrial respiration, and inducing reactive oxygen species (ROS) production. Several active substances (vitamin C, NAC, CUR, GSH, resveratrol, CAPE, and TQ) play a protective role against neonicotinoid-induced systemic toxicity by inhibiting ROS signaling pathways, apoptosis, and lipid peroxidation. This review manuscript emphasizes the importance and urgency of the development of neonicotinoid antidotes, emphasizes the prospect of the application of targeted mitochondrial antidotes, and prospects the development of neonicotinoid antidotes in order to provide some strategies for the prevention of neonicotinoid toxicity.
Collapse
|
9
|
Ozturk S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle 2022; 21:547-571. [PMID: 35072590 PMCID: PMC8942507 DOI: 10.1080/15384101.2022.2026704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/26/2023] Open
Abstract
Mammalian oocytes undergo two rounds of developmental arrest during maturation: at the diplotene of the first meiotic prophase and metaphase of the second meiosis. These arrests are strictly regulated by follicular cells temporally producing the secondary messengers, cAMP and cGMP, and other factors to regulate maturation promoting factor (composed of cyclin B1 and cyclin-dependent kinase 1) levels in the oocytes. Out of these normally appearing developmental arrests, permanent arrests may occur in the oocytes at germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stage. This issue may arise from absence or altered expression of the oocyte-related genes playing key roles in nuclear and cytoplasmic maturation. Additionally, the assisted reproductive technology (ART) applications such as ovarian stimulation and in vitro culture conditions both of which harbor various types of chemical agents may contribute to forming the permanent arrests. In this review, the molecular determinants of developmental and permanent arrests occurring in the mammalian oocytes are comprehensively evaluated in the light of current knowledge. As number of permanently arrested oocytes at different stages is increasing in ART centers, potential approaches for inducing permanent arrests to obtain competent oocytes are discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
10
|
α-Ketoglutarate Improves Meiotic Maturation of Porcine Oocytes and Promotes the Development of PA Embryos, Potentially by Reducing Oxidative Stress through the Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7113793. [PMID: 35237383 PMCID: PMC8885182 DOI: 10.1155/2022/7113793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
Abstract
α-Ketoglutarate (α-KG) is a metabolite in the tricarboxylic acid cycle. It has a strong antioxidant function and can effectively prevent oxidative damage. Previous studies have shown that α-KG exists in porcine follicles, and its content gradually increases as the follicles grow and mature. However, the potential mechanism of supplementation of α-KG on porcine oocytes during in vitro maturation (IVM) has not yet been reported. The purpose of this study was to explore the effect of α-KG on the early embryonic development of pigs and the mechanisms underlying these effects. We found that α-KG can enhance the development of early pig embryos. Adding 20 μM α-KG to the in vitro culture medium significantly increased the rate of blastocyst formation and the total cell number. Compared with to that of the control group, apoptosis in blastocysts of the supplement group was significantly reduced. α-KG reduced the production of reactive oxygen species and glutathione levels in cells. α-KG not only improved the activity of mitochondria but also inhibited the occurrence of apoptosis. After supplementation with α-KG, pig embryo pluripotency-related genes (OCT4, NANOG, and SOX2) and antiapoptotic genes (Bcl2) were upregulated. In terms of mechanism, α-KG activates the Nrf2/ARE signaling pathway to regulate the expression of antioxidant-related targets, thus combating oxidative stress during the in vitro culture of oocytes. Activated Nrf2 promotes the transcription of Bcl2 genes and inhibits cell apoptosis. These results indicate that α-KG supplements have a beneficial effect on IVM by regulating oxidative stress during the IVM of porcine oocytes and can be used as a potential antioxidant for IVM of porcine oocytes.
Collapse
|
11
|
Xiao Y, Yuan B, Hu W, Qi J, Jiang H, Sun B, Zhang J, Liang S. Tributyltin Oxide Exposure During in vitro Maturation Disrupts Oocyte Maturation and Subsequent Embryonic Developmental Competence in Pigs. Front Cell Dev Biol 2021; 9:683448. [PMID: 34262900 PMCID: PMC8273238 DOI: 10.3389/fcell.2021.683448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022] Open
Abstract
Tributyltin oxide (TBTO), an organotin compound, has been demonstrated to have toxic effects on several cell types. Previous research has shown that TBTO impairs mouse denuded oocyte maturation. However, limited information is available on the effects of TBTO exposure on livestock reproductive systems, especially on porcine oocytes in the presence of dense cumulus cells. In the present research, we evaluated the effects of TBTO exposure on porcine oocyte maturation and the possible underlying mechanisms. Porcine cumulus-oocyte complexes were cultured in maturation medium with or without TBTO for 42 h. We found that TBTO exposure during oocyte maturation prevented polar body extrusion, inhibited cumulus expansion and impaired subsequent blastocyst formation after parthenogenetic activation. Further analysis revealed that TBTO exposure not only induced intracellular reactive oxygen species (ROS) accumulation but also caused a loss of mitochondrial membrane potential and reduced intracellular ATP generation. In addition, TBTO exposure impaired porcine oocyte quality by disrupting cellular iron homeostasis. Taken together, these results demonstrate that TBTO exposure impairs the porcine oocyte maturation process by inducing intracellular ROS accumulation, causing mitochondrial dysfunction, and disrupting cellular iron homeostasis, thus decreasing the quality and impairing the subsequent embryonic developmental competence of porcine oocytes.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bao Yuan
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Weiyi Hu
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiajia Qi
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Jiang
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Boxing Sun
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Wang L, Tang J, Wang L, Tan F, Song H, Zhou J, Li F. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol 2021; 236:7966-7983. [PMID: 34121193 DOI: 10.1002/jcp.30468] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
In a healthy body, reactive oxygen species (ROS) and antioxidants remain balanced. When the balance is broken toward an overabundance of ROS, oxidative stress appears and may lead to oocyte aging. Oocyte aging is mainly reflected as the gradual decrease of oocyte quantity and quality. Here, we aim to review the relationship between oxidative stress and oocyte aging. First, we introduced that the defective mitochondria, the age-related ovarian aging, the repeated ovulation, and the high-oxygen environment were the ovarian sources of ROS in vivo and in vitro. And we also introduced other sources of ROS accumulation in ovaries, such as overweight and unhealthy lifestyles. Then, we figured that oxidative stress may act as the "initiator" for oocyte aging and reproductive pathology, which specifically causes follicular abnormally atresia, abnormal meiosis, lower fertilization rate, delayed embryonic development, and reproductive disease, including polycystic ovary syndrome and ovary endometriosis cyst. Finally, we discussed current strategies for delaying oocyte aging. We introduced three autophagy antioxidant pathways like Beclin-VPS34-Atg14, adenosine 5'-monophosphate (AMP)-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR), and p62-Keap1-Nrf2. And we also describe the different antioxidants used to combat oocyte aging. In addition, the hypoxic (5% O2 ) culture environment for oocytes avoiding oxidative stress in vitro. So, this review not only contribute to our general understanding of oxidative stress and oocyte aging but also lay the foundations for the therapies to treat premature ovarian failure and oocyte aging in women.
Collapse
Affiliation(s)
- Ling Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Jinhua Tang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Lei Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Feng Tan
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Huibin Song
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Jiawei Zhou
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fenge Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| |
Collapse
|
13
|
Dai W, He QZ, Zhu BQ, Zeng HC. Oxidative stress-mediated apoptosis is involved in bisphenol S-induced reproductive toxicity in male C57BL/6 mice. J Appl Toxicol 2021; 41:1839-1851. [PMID: 34002388 DOI: 10.1002/jat.4170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 01/24/2023]
Abstract
The reproductive toxicity of bisphenol S (BPS) in male mammals and its possible mechanism are not clear. We investigated the effects and possible mechanism of action of BPS on adult male C57BL/6 mice. We found that exposure to 200-mg/kg BPS resulted in a significant decrease in the sperm count in the caput/corpus and cauda epididymis, significantly decreased sperm motility, and significantly increased the sperm deformity. Histological evaluation revealed that BPS exposure caused a decrease of spermatozoa in the lumen of seminiferous tubules and a reduction in the proportion of Stage VII or VIII seminiferous tubules in the BPS-treated groups. Furthermore, ultrastructure analysis revealed BPS-induced mitochondrial damage and apoptosis in spermatogenic cells. Moreover, BPS exposure-induced oxidative stress in testicular tissues. Further, dUTP-biotin nick end labeling (TUNEL) assay showed that BPS induced the apoptosis of spermatogenic cells in a dose-dependent manner. BPS also significantly upregulated cleaved caspase-8, cleaved caspase-9, cleaved caspase-3, Fas, and FasL and significantly downregulated the Bcl-2/Bax ratio. These results suggest that BPS-induced oxidative stress in the testis and spermatogenic cell apoptosis potentially impairs spermatogenesis and sperm function, which may be the mechanism of the reproductive toxicity of BPS. The Fas/FasL and mitochondrial signal pathways may be involved in BPS-induced oxidative stress-related apoptosis. These results suggest that BPS-induced oxidative stress in the testis and spermatogenic cell apoptosis potentially impairs spermatogenesis and sperm function, which may be the mechanism of the reproductive toxicity of BPS. The Fas/FasL and mitochondrial signal pathways may be involved in BPS-induced oxidative stress-related apoptosis.
Collapse
Affiliation(s)
- Wei Dai
- Department of Preventive Medicine, University of South China, Hengyang, China
| | - Qing-Zhi He
- Department of Occupational and Environmental Health, Guilin Medical University, Guilin, China
| | - Bi-Qi Zhu
- Department of Preventive Medicine, University of South China, Hengyang, China
| | - Huai-Cai Zeng
- Department of Preventive Medicine, University of South China, Hengyang, China.,Department of Occupational and Environmental Health, Guilin Medical University, Guilin, China
| |
Collapse
|
14
|
Liu Y, He QK, Xu ZR, Xu CL, Zhao SC, Luo YS, Sun X, Qi ZQ, Wang HL. Thiamethoxam Exposure Induces Endoplasmic Reticulum Stress and Affects Ovarian Function and Oocyte Development in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1942-1952. [PMID: 33533595 DOI: 10.1021/acs.jafc.0c06340] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neonicotinoids are the most widely used insecticides in modern agriculture, and their residues have been found in the environment and food. Previous studies reported that neonicotinoids exert toxic effects in various tissues, but whether they interfered with the female reproductive process remains unknown. In our present research, thiamethoxam was selected as a representative neonicotinoid to establish a mouse toxicity model with gavage. We found that thiamethoxam decreased the ovarian coefficient and disrupted the expression of female hormone receptors, subsequently affecting follicle development. Ovarian granulosa cells from the thiamethoxam exposure group underwent a high level of apoptosis. Using transcriptome analysis, we showed that thiamethoxam exposure altered the expression of multiple oocyte genes related to inflammation, apoptosis, and endoplasmic reticulum stress. Thiamethoxam also adversely affected oocyte and embryo development. Western blotting and fluorescence staining results confirmed that thiamethoxam affected the integrity of DNA, triggered apoptosis, promoted oxidative stress and endoplasmic reticulum stress, and impaired mitochondrial function. Collectively, our results indicated that thiamethoxam exposure disrupts ovarian homeostasis and decreases oocyte quality via endoplasmic reticulum stress and apoptosis induction.
Collapse
Affiliation(s)
- Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Quan-Kuo He
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhi-Ran Xu
- Center for Translational Medicine Research, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, People's Republic of China
| | - Chang-Long Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi 530031, People's Republic of China
| | - Si-Cheng Zhao
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yu-Shen Luo
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xue Sun
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| |
Collapse
|
15
|
Abeysinghe P, Turner N, Morean Garcia I, Mosaad E, Peiris HN, Mitchell MD. The Role of Exosomal Epigenetic Modifiers in Cell Communication and Fertility of Dairy Cows. Int J Mol Sci 2020; 21:ijms21239106. [PMID: 33266010 PMCID: PMC7731370 DOI: 10.3390/ijms21239106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal uterine function affects conception rate and embryo development, thereby leading to poor fertility and reproduction failure. Exosomes are a nanosized subclass of extracellular vesicles (EV) that have important functions as intercellular communicators. They contain and carry transferable bioactive substances including micro RNA (miRNA) for target cells. Elements of the cargo can provide epigenetic modifications of the recipient cells and may have crucial roles in mechanisms of reproduction. The dairy industry accounts for a substantial portion of the economy of many agricultural countries. Exosomes can enhance the expression of inflammatory mediators in the endometrium, which contribute to various inflammatory diseases in transition dairy cows. This results in reduced fertility which leads to reduced milk production and increased cow maintenance costs. Thus, gaining a clear knowledge of exosomal epigenetic modifiers is critical to improving the breeding success and profitability of dairy farms. This review provides a brief overview of how exosomal miRNA contributes to inflammatory diseases and hence to poor fertility, particularly in dairy cows.
Collapse
|