Bridgeman L, Juan C, Berrada H, Severin I, Juan-García A. Evaluating the Genotoxicity and Mutagenicity of Food Contaminants: Acrylamide, Penitrem A, and 3-Acetyldeoxynivalenol in Individual and Combined Exposure In Vitro.
J Appl Toxicol 2025. [PMID:
40326165 DOI:
10.1002/jat.4805]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
This study aimed to evaluate the genotoxic effects of food contaminants exposure in human neuroblastoma SH-SY5Y cells using the micronucleus (MN) assay and Ames test. Acrylamide (AA), penitrem A (PEN A), and 3-acetyldeoxynivalenol (3-ADON) were tested both individually and in combination. Since humans are likely to be exposed to these substances simultaneously through diet, it is crucial to investigate their combined effects of the compounds rather than just their individual toxicities. The results demonstrated significant increases in MN frequency for all individual treatments and in a dose-dependent manner for AA and 3-ADON. Combined treatments also resulted in higher MN frequencies, particularly for AA + 3-ADON and PEN A + 3-ADON respect to the control. However, the Ames test revealed no mutagenic potential for any of the individual or combined treatments, consistent with previous studies. These findings suggest that while food contaminants induce chromosomal damage (MN induction), they do not cause gene mutations. Nonetheless, the lack of single mutations activity does not exclude the potential health risks of combined mycotoxin exposure, especially given the observed genotoxicity due to the DNA damage through chromosomal aberrations. Future studies focused on the mechanism of action should investigate the combined effects of food contaminants in more detail to better assess their potential health risks.
Collapse