1
|
Xing J, Bou G, Liu G, Li X, Shen Y, Akhtar MF, Bai D, Zhao Y, Dugarjaviin M, Zhang X. Leucine promotes energy metabolism and stimulates slow-twitch muscle fibers expression through AMPK/mTOR signaling in equine skeletal muscle satellite cells. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101249. [PMID: 38776751 DOI: 10.1016/j.cbd.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Previous research has shown that leucine (Leu) can stimulate and enhance the proliferation of equine skeletal muscle satellite cells (SCs). The gene expression profile associated with Leu-induced proliferation of equine SCs has also been documented. However, the specific role of Leu in regulating the expression of slow-twitch muscle fibers (slow-MyHC) and mitochondrial function in equine SCs, as well as the underlying mechanism, remains unclear. During this investigation, equine SCs underwent culturing in differentiation medium and were subjected to varying concentrations of Leu (0 mM, 0.5 mM, 1 mM, 2 mM, 5 mM, and 10 mM) over a span of 3 days. AMP-activated protein kinase (AMPK) inhibitor Compound C and mammalian target of rapamycin complex (mTOR) inhibitor Rapamycin were utilized to explore its underlying mechanism. Here we showed that the expression of slow-MyHC at 2 mM Leu level was significantly higher than the concentration levels of 0 mM,0.5 mM and 10 mM (P <0.01), and there was no significant difference compared to other groups (P > 0.05); the basal respiration, maximum respiration, standby respiration and the expression of slow-MyHC, PGC-1α, Cytc, ND1, TFAM, and COX1 were significantly increased with Leu supplementation (P < 0.01). We also found that Leu up-regulated the expression of key proteins on AMPK and mTOR signaling pathways, including LKB1, p-LKB1, AMPK, p-AMPK, S6, p-S6, 4EBP1, p-4EBP1, mTOR and p-mTOR (P < 0.05 or P < 0.01). Notably, when we treated the equine SCs with the AMPK inhibitor Compound C and the mTOR inhibitor Rapamycin, we observed a reduction in the beneficial effects of Leu on the expression of genes related to slow-MyHC and signaling pathway-related gene expressions. This study provides novel evidence that Leu promotes slow-MyHC expression and enhances mitochondrial function in equine SCs through the AMPK/mTOR signaling pathways, shedding light on the underlying mechanisms involved in these processes for the first time.
Collapse
Affiliation(s)
- Jingya Xing
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guiqin Liu
- College of Agronomy, Liaocheng University, Liaocheng 252059, Shandong Province, China
| | - Xinyu Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yingchao Shen
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | | | - Dongyi Bai
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinzhuang Zhang
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
2
|
Rudar M, Suryawan A, Nguyen HV, Chacko SK, Vonderohe C, Stoll B, Burrin DG, Fiorotto ML, Davis TA. Pulsatile Leucine Administration during Continuous Enteral Feeding Enhances Skeletal Muscle Mechanistic Target of Rapamycin Complex 1 Signaling and Protein Synthesis in a Preterm Piglet Model. J Nutr 2024; 154:505-515. [PMID: 38141773 PMCID: PMC10900192 DOI: 10.1016/j.tjnut.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Continuous feeding does not elicit an optimal anabolic response in skeletal muscle but is required for some preterm infants. We reported previously that intermittent intravenous pulses of leucine (Leu; 800 μmol Leu·kg-1·h-1 every 4 h) to continuously fed pigs born at term promoted mechanistic target of rapamycin complex 1 (mTORC1) activation and protein synthesis in skeletal muscle. OBJECTIVES The aim was to determine the extent to which intravenous Leu pulses activate mTORC1 and enhance protein synthesis in the skeletal muscle of continuously fed pigs born preterm. METHODS Pigs delivered 10 d preterm was advanced to full oral feeding >4 d and then assigned to 1 of the following 4 treatments for 28 h: 1) ALA (continuous feeding; pulsed with 800 μmol alanine·kg-1·h-1 every 4 h; n = 8); 2) L1× (continuous feeding; pulsed with 800 μmol Leu·kg-1·h-1 every 4 h; n = 7); 3) L2× (continuous feeding; pulsed with 1600 μmol Leu·kg-1·h-1 every 4 h; n = 8); and 4) INT (intermittent feeding every 4 h; supplied with 800 μmol alanine·kg-1 per feeding; n = 7). Muscle protein synthesis rates were determined with L-[2H5-ring]Phenylalanine. The activation of insulin, amino acid, and translation initiation signaling pathways were assessed by Western blot. RESULTS Peak plasma Leu concentrations were 134% and 420% greater in the L2× compared to the L1× and ALA groups, respectively (P < 0.01). Protein synthesis was greater in the L2× than in the ALA and L1× groups in both the longissimus dorsi and gastrocnemius muscles (P < 0.05) but not different from the INT group (P > 0.10). Amino acid signaling upstream and translation initiation signaling downstream of mTORC1 largely corresponded to the differences in protein synthesis. CONCLUSIONS Intravenous Leu pulses potentiate mTORC1 activity and protein synthesis in the skeletal muscles of continuously fed preterm pigs, but the amount required is greater than in pigs born at term.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, AL, United States
| | - Agus Suryawan
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Hanh V Nguyen
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Shaji K Chacko
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Caitlin Vonderohe
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Barbara Stoll
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Douglas G Burrin
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Marta L Fiorotto
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Teresa A Davis
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States.
| |
Collapse
|