1
|
Wen C, Lu X, Sun Y, Li Q, Liao J, Li L. Naringenin induces the cell apoptosis of acute myeloid leukemia cells by regulating the lncRNA XIST/miR-34a/HDAC1 signaling. Heliyon 2023; 9:e15826. [PMID: 37206002 PMCID: PMC10189189 DOI: 10.1016/j.heliyon.2023.e15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a life-threatening aggressive malignancy of the bone marrow and has posed a great challenge to the clinic, due to a lack of fully understanding of the molecular mechanism. Histone deacetylase 1 (HDAC1) has been reported to be a therapeutic target for treating AML. Naringenin (Nar) may act as an anti-leukemic agent and suppress the expression of HDACs. However, the potential underlying mechanism of Nar in suppressing the activity of HDAC1 remains unclear. Here, we found that Nar induced the apoptosis, decreased the expression of lncRNA XIST and HDAC1, and increased the expression of microRNA-34a in HL60 cells. Sh-XIST transfection could induce cell apoptosis. On the contrary, the forced expression of XIST might reverse the biological actions of Nar. XIST could sponge miR-34a, which targeted to degrade HDAC1. The forced expression of HDAC1 could effectively reverse the effects of Nar. Thus, Nar can induce cell apoptosis by mediating the expression of lncRNA XIST/miR-34a/HDAC1 signaling in HL60 cells.
Collapse
Affiliation(s)
- Chao Wen
- School of Nursing, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoliang Lu
- Department of General Surgery, Ningdu County People's Hospital, Ganzhou, 341000, China
| | - Yingyin Sun
- Gannan Health Vocational College, Ganzhou, 341000, China
| | - Qi Li
- Department of Basic Medicine, Chuxiong Medical and Pharmaceutical College, Chuxiong, 675005, China
| | - Jing Liao
- School of Nursing, Gannan Medical University, Ganzhou, 341000, China
| | - Lin Li
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Corresponding author.
| |
Collapse
|
2
|
Chen YF, Lawal B, Huang LJ, Kuo SC, Sumitra MR, Mokgautsi N, Lin HY, Huang HS. In Vitro and In Silico Biological Studies of 4-Phenyl-2-quinolone (4-PQ) Derivatives as Anticancer Agents. Molecules 2023; 28:555. [PMID: 36677621 PMCID: PMC9861105 DOI: 10.3390/molecules28020555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Our previous study found that 2-phenyl-4-quinolone (2-PQ) derivatives are antimitotic agents, and we adopted the drug design concept of scaffold hopping to replace the 2-aromatic ring of 2-PQs with a 4-aromatic ring, representing 4-phenyl-2-quinolones (4-PQs). The 4-PQ compounds, whose structural backbones also mimic analogs of podophyllotoxin (PPT), maybe a new class of anticancer drugs with simplified PPT structures. In addition, 4-PQs are a new generation of anticancer lead compounds as apoptosis stimulators. On the other hand, previous studies showed that 4-arylcoumarin derivatives with 5-, 6-, and 7-methoxy substitutions displayed remarkable anticancer activities. Therefore, we further synthesized a series of 5-, 6-, and 7-methoxy-substituted 4-PQ derivatives (19-32) by Knorr quinoline cyclization, and examined their anticancer effectiveness. Among these 4-PQs, compound 22 demonstrated excellent antiproliferative activities against the COLO205 cell line (50% inhibitory concentration (IC50) = 0.32 μM) and H460 cell line (IC50 = 0.89 μM). Furthermore, we utilized molecular docking studies to explain the possible anticancer mechanisms of these 4-PQs by the docking mode in the colchicine-binding pocket of the tubulin receptor. Consequently, we selected the candidate compounds 19, 20, 21, 22, 25, 27, and 28 to predict their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. Pharmacokinetics (PKs) indicated that these 4-PQs displayed good drug-likeness and bioavailability, and had no cardiotoxic side effects or carcinogenicity, but we detected risks of drug-drug interactions and AMES toxicity (mutagenic). However, structural modifications of these 4-PQs could improve their PK properties and reduce their side effects, and their promising anticancer activities attracted our attention for further studies.
Collapse
Affiliation(s)
- Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medicine, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Bashir Lawal
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Li-Jiau Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medicine, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Sheng-Chu Kuo
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medicine, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Maryam Rachmawati Sumitra
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Lewinska G, Sanetra J, Marszalek KW. Application of quinoline derivatives in third-generation photovoltaics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2021; 32:18451-18465. [PMID: 38624760 PMCID: PMC8267773 DOI: 10.1007/s10854-021-06225-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 05/22/2023]
Abstract
Among many chemical compounds synthesized for third-generation photovoltaic applications, quinoline derivatives have recently gained popularity. This work reviews the latest developments in the quinoline derivatives (metal complexes) for applications in the photovoltaic cells. Their properties for photovoltaic applications are detailed: absorption spectra, energy levels, and other achievements presented by the authors. We have also outlined various methods for testing the compounds for application. Finally, we present the implementation of quinoline derivatives in photovoltaic cells. Their architecture and design are described, and also, the performance for polymer solar cells and dye-synthesized solar cells was highlighted. We have described their performance and characteristics. We have also pointed out other, non-photovoltaic applications for quinoline derivatives. It has been demonstrated and described that quinoline derivatives are good materials for the emission layer of organic light-emitting diodes (OLEDs) and are also used in transistors. The compounds are also being considered as materials for biomedical applications.
Collapse
Affiliation(s)
- Gabriela Lewinska
- Institute of Electronics, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Jerzy Sanetra
- The author Jerzy Sanetra is retired from Institute of Physics, Faculty of Materials Science and Physics, Cracow University of Technology, 30-035, Kraków, Poland
| | - Konstanty W. Marszalek
- Institute of Electronics, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, 30-059, Kraków, Poland
| |
Collapse
|