1
|
Blood group antigens SLeX, SLeA, and LeY as prognostic markers in endometrial cancer. J Cancer Res Clin Oncol 2022; 148:3323-3335. [PMID: 35729354 DOI: 10.1007/s00432-022-04098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Endometrial cancer (EC) is the most common gynecological cancer worldwide. Treatment has been improved in recent years, but, in advanced stages, therapeutical options are still limited. It has been reported that the expression of the blood group antigens Sialyl Lewis X (SLeX), Sialyl Lewis A (SLeA) and Lewis Y (LeY) is associated with prognosis in several tumors. Large studies on endometrial and cervical cancer are still pending. METHODS Specimens of 234 patients with EC were immunohistochemically stained with antibodies for SLeX, SLeA and LeY. Expression was correlated to histopathological variables. RESULTS High expression of SLeX was correlated to low pT-stage (p = 0.013), low grade (p < 0.001), low FIGO-stage (p = 0.006) and better overall survival rates (OS; p = 0.023). High expression of SLeA was associated with low pT-stage (p = 0.013), low grade (p = 0.001) and better progression-free survival (PFS; p = 0.043). LeY staining was correlated to pN + (p = 0.038), low grade (p = 0.005) and poorer PFS (p = 0.022). CONCLUSION This is the first study examining the expression of SLeX, SLeA and LeY in EC, which can serve as additional future prognostic markers. Further studies are necessary to understand the underlying mechanisms. The study was approved by the local ethics committee of the Ludwig-Maximilians University Munich (reference number 19-249).
Collapse
|
2
|
Hodgkinson KM, Kiernan J, Shih AW, Solh Z, Sheffield WP, Pineault N. Intersecting Worlds of Transfusion and Transplantation Medicine: An International Symposium Organized by the Canadian Blood Services Centre for Innovation. Transfus Med Rev 2017; 31:183-192. [DOI: 10.1016/j.tmrv.2017.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 01/28/2023]
|
3
|
Ewald DR, Sumner SCJ. Blood type biochemistry and human disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2016; 8:517-535. [PMID: 27599872 PMCID: PMC5061611 DOI: 10.1002/wsbm.1355] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/08/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
Associations between blood type and disease have been studied since the early 1900s when researchers determined that antibodies and antigens are inherited. In the 1950s, the chemical identification of the carbohydrate structure of surface antigens led to the understanding of biosynthetic pathways. The blood type is defined by oligosaccharide structures, which are specific to the antigens, thus, blood group antigens are secondary gene products, while the primary gene products are various glycosyltransferase enzymes that attach the sugar molecules to the oligosaccharide chain. Blood group antigens are found on red blood cells, platelets, leukocytes, plasma proteins, certain tissues, and various cell surface enzymes, and also exist in soluble form in body secretions such as breast milk, seminal fluid, saliva, sweat, gastric secretions, urine, and amniotic fluid. Recent advances in technology, biochemistry, and genetics have clarified the functional classifications of human blood group antigens, the structure of the A, B, H, and Lewis determinants and the enzymes that produce them, and the association of blood group antigens with disease risks. Further research to identify differences in the biochemical composition of blood group antigens, and the relationship to risks for disease, can be important for the identification of targets for the development of nutritional intervention strategies, or the identification of druggable targets. WIREs Syst Biol Med 2016, 8:517-535. doi: 10.1002/wsbm.1355 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- D Rose Ewald
- Discovery Sciences, RTI International, Research Triangle Park, NC, USA
| | - Susan C J Sumner
- Discovery Sciences, RTI International, Research Triangle Park, NC, USA.
| |
Collapse
|
4
|
Walsh GM, Shih AW, Solh Z, Golder M, Schubert P, Fearon M, Sheffield WP. Blood-Borne Pathogens: A Canadian Blood Services Centre for Innovation Symposium. Transfus Med Rev 2016; 30:53-68. [PMID: 26962008 PMCID: PMC7126603 DOI: 10.1016/j.tmrv.2016.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/18/2016] [Indexed: 12/19/2022]
Abstract
Testing donations for pathogens and deferring selected blood donors have reduced the risk of transmission of known pathogens by transfusion to extremely low levels in most developed countries. Protecting the blood supply from emerging infectious threats remains a serious concern in the transfusion medicine community. Transfusion services can employ indirect measures such as surveillance, hemovigilance, and donor questioning (defense), protein-, or nucleic acid based direct testing (detection), or pathogen inactivation of blood products (destruction) as strategies to mitigate the risk of transmission-transmitted infection. In the North American context, emerging threats currently include dengue, chikungunya, and hepatitis E viruses, and Babesia protozoan parasites. The 2003 SARS and 2014 Ebola outbreaks illustrate the potential of epidemics unlikely to be transmitted by blood transfusion but disruptive to blood systems. Donor-free blood products such as ex vivo generated red blood cells offer a theoretical way to avoid transmission-transmitted infection risk, although biological, engineering, and manufacturing challenges must be overcome before this approach becomes practical. Similarly, next generation sequencing of all nucleic acid in a blood sample is currently possible but impractical for generalized screening. Pathogen inactivation systems are in use in different jurisdictions around the world, and are starting to gain regulatory approval in North America. Cost concerns make it likely that pathogen inactivation will be contemplated by blood operators through the lens of health economics and risk-based decision making, rather than in zero-risk paradigms previously embraced for transfusable products. Defense of the blood supply from infectious disease risk will continue to require innovative combinations of surveillance, detection, and pathogen avoidance or inactivation. A symposium on blood-borne pathogens was held September 26, 2015, in Toronto, Canada. Transmission-transmitted infections remain a threat to the blood supply. The residual risk from established pathogens is small; emerging agents are a concern. Next generation sequencing and donor-free blood are not yet practical approaches. Pathogen inactivation technology is being increasingly used around the world. Health economic concerns will likely guide future advances in this area.
Collapse
Affiliation(s)
- Geraldine M Walsh
- Centre for Innovation, Canadian Blood Services, Hamilton, Ottawa, and Vancouver, Canada
| | - Andrew W Shih
- Medical Services and Innovation, Canadian Blood Services, McMaster University, Hamilton, Canada; Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ziad Solh
- Medical Services and Innovation, Canadian Blood Services, McMaster University, Hamilton, Canada; Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Mia Golder
- Centre for Innovation, Canadian Blood Services, Hamilton, Ottawa, and Vancouver, Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services, Hamilton, Ottawa, and Vancouver, Canada; Centre for Blood Research, University of British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
| | - Margaret Fearon
- Medical Services and Innovation, Canadian Blood Services, McMaster University, Hamilton, Canada; Pathology and Laboratory Medicine, University of Toronto, Canada
| | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, Ottawa, and Vancouver, Canada; Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
| |
Collapse
|
5
|
Zeller MP, Al-Habsi KS, Golder M, Walsh GM, Sheffield WP. Plasma and Plasma Protein Product Transfusion: A Canadian Blood Services Centre for Innovation Symposium. Transfus Med Rev 2015; 29:181-94. [PMID: 25862281 DOI: 10.1016/j.tmrv.2015.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/27/2022]
Abstract
Plasma obtained via whole blood donation processing or via apheresis technology can either be transfused directly to patients or pooled and fractionated into plasma protein products that are concentrates of 1 or more purified plasma protein. The evidence base supporting clinical efficacy in most of the indications for which plasma is transfused is weak, whereas high-quality evidence supports the efficacy of plasma protein products in at least some of the clinical settings in which they are used. Transfusable plasma utilization remains composed in part of applications that fall outside of clinical practice guidelines. Plasma contains all of the soluble coagulation factors and is frequently transfused in efforts to restore or reinforce patient hemostasis. The biochemical complexities of coagulation have in recent years been rationalized in newer cell-based models that supplement the cascade hypothesis. Efforts to normalize widely used clinical hemostasis screening test values by plasma transfusion are thought to be misplaced, but superior rapid tests have been slow to emerge. The advent of non-vitamin K-dependent oral anticoagulants has brought new challenges to clinical laboratories in plasma testing and to clinicians needing to reverse non-vitamin K-dependent oral anticoagulants urgently. Current plasma-related controversies include prophylactic plasma transfusion before invasive procedures, plasma vs prothrombin complex concentrates for urgent warfarin reversal, and the utility of increased ratios of plasma to red blood cell units transfused in massive transfusion protocols. The first recombinant plasma protein products to reach the clinic were recombinant hemophilia treatment products, and these donor-free equivalents to factors VIII and IX are now being supplemented with novel products whose circulatory half-lives have been increased by chemical modification or genetic fusion. Achieving optimal plasma utilization is an ongoing challenge in the interconnected worlds of transfusable plasma, plasma protein products, and recombinant and engineered replacements.
Collapse
Affiliation(s)
- Michelle P Zeller
- Centre for Innovation, Medical Services and Innovation, Canadian Blood Services, Hamilton, Ottawa, Vancouver, Canada; Department of Medicine, McMaster University, Hamilton, Canada
| | - Khalid S Al-Habsi
- Centre for Innovation, Medical Services and Innovation, Canadian Blood Services, Hamilton, Ottawa, Vancouver, Canada; Department of Medicine, McMaster University, Hamilton, Canada
| | - Mia Golder
- Centre for Innovation, Medical Services and Innovation, Canadian Blood Services, Hamilton, Ottawa, Vancouver, Canada
| | - Geraldine M Walsh
- Centre for Innovation, Medical Services and Innovation, Canadian Blood Services, Hamilton, Ottawa, Vancouver, Canada
| | - William P Sheffield
- Centre for Innovation, Medical Services and Innovation, Canadian Blood Services, Hamilton, Ottawa, Vancouver, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
| |
Collapse
|
6
|
Webert KE, Alam AQ, Chargé SB, Sheffield WP. Platelet Utilization: A Canadian Blood Services Research and Development Symposium. Transfus Med Rev 2014; 28:84-97. [DOI: 10.1016/j.tmrv.2014.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 01/24/2023]
|
7
|
Frequencies and specificities of "enzyme-only" detected erythrocyte alloantibodies in patients hospitalized in austria: is an enzyme test required for routine red blood cell antibody screening? JOURNAL OF BLOOD TRANSFUSION 2014; 2014:532919. [PMID: 24790773 PMCID: PMC3984838 DOI: 10.1155/2014/532919] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 11/17/2022]
Abstract
UNLABELLED The aim of this study was to determine the frequencies and specificities of "enzyme-only" detected red blood cell (RBC) alloantibodies in the routine antibody screening and antibody identification in patients hospitalized in Austria. Routine blood samples of 2420 patients were investigated. The antibody screening was performed with a 3-cell panel in the low-ionic strength saline- (LISS-) indirect antiglobulin test (IAT) and with an enzyme-pretreated (papain) 3-cell panel fully automated on the ORTHO AutoVue Innova System. The antibody identification was carried out manually with an 11-cell panel in the LISS-IAT and with an enzyme-pretreated (papain) 11-cell panel. In total 4.05% (n = 98) of all patients (n = 2420) had a positive RBC antibody screening result. Of them 25.51% (25/98) showed "enzyme-only" detected specific or nonspecific RBC alloantibodies. Rhesus and Lewis system antibodies were found the only specificities of "enzyme-only" RBC alloantibodies: all in all 4.8% (4/98) were detected with anti-E, 3.06% (3/98) with anti-Le(a), 3.06% (3/98) with anti-D after anti-D prophylaxis and 1.02% (1/98) with anti-e. In total, 14.29% (14/98) showed a nonspecific RBC alloantibody result with the enzyme test. The results of the present study demonstrate that a high number of unwanted positive reactions with the enzyme technique overshadows the detection of "enzyme-only" RBC alloantibodies. ( TRIAL REGISTRATION K-37-13).
Collapse
|
8
|
Guelsin GAS, Sell AM, Castilho L, Masaki VL, de Melo FC, Hashimoto MN, Hirle LS, Visentainer JEL. Genetic polymorphisms of Rh, Kell, Duffy and Kidd systems in a population from the State of Paraná, southern Brazil. Rev Bras Hematol Hemoter 2011; 33:21-5. [PMID: 23284238 PMCID: PMC3521430 DOI: 10.5581/1516-8484.20110009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 11/21/2010] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Red blood group genes are highly polymorphic and the distribution of alleles varies among different populations and ethnic groups. AIM To evaluate allele polymorphisms of the Rh, Kell, Duffy and Kidd blood group systems in a population of the State of Paraná METHODS Rh, Kell, Duffy and Kidd blood group polymorphisms were evaluated in 400 unrelated blood or bone marrow donors from the northwestern region of Paraná State between September 2008 and October 2009. The following techniques were used: multiplex-polymerase chain reaction genotyping for the identification of the RHD gene and RHCE*C/c genotype; allele-specific polymerase chain reaction for the RHDψ and restriction fragment length polymorphism polymerase chain reaction for the RHCE*E/e, KEL, FY-GATA and JK alleles. RESULTS These techniques enabled the evaluation of the frequencies of Rh, Kell, Duffy and Kidd polymorphisms in the population studied, which were compared to frequencies in two populations from the eastern region of São Paulo State. CONCLUSION The RHCE*c/c, FY*A/FY*B, GATA-33 T/T, JK*B/JK*B genotypes were more prevalent in the population from Paraná, while RHCE*C/c, FY*B/FY*B, GATA-33 C/C, JK*A/JK*B genotypes were more common in the populations from São Paulo.
Collapse
Affiliation(s)
| | - Ana Maria Sell
- Universidade Estadual de Maringá UEM, Maringá (PR), Brazil
| | - Lilian Castilho
- Universidade Estadual de Campinas UNICAMP, Campinas (SP), Brazil
| | | | | | | | | | | |
Collapse
|
9
|
|