1
|
Kadam S, Vandana M, Patwardhan S, Kaushik KS. Looking beyond the smokescreen: can the oral microbiome be a tool or target in the management of tobacco-associated oral cancer? Ecancermedicalscience 2021; 15:1179. [PMID: 33777172 PMCID: PMC7987485 DOI: 10.3332/ecancer.2021.1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Indexed: 11/07/2022] Open
Abstract
A wide range of microbes inhabit the oral cavity, and bacterial and fungal communities most often exist as structured communities or biofilms. The use of tobacco alters the structure of the oral microbiome, including that of potentially malignant lesions, and the altered oral microbiome influences key microenvironmental changes such as chronic inflammation, secretion of carcinogenic toxins, cellular and tissue remodelling and suppression of apoptosis. Given this, it is clear that the bacterial and fungal biofilms in potentially malignant states are likely not passive entities, but could play a critical role in shaping potential malignant and carcinogenic conditions. This holds potential towards leveraging the oral microbiome for the management of tobacco-associated potentially malignant lesions and oral cancer. Here, we explore this line of investigation by reviewing the effects of tobacco in shaping the oral microbiome, and analyse the available evidence in the light of the microbiome of oral potentially malignant and cancerous lesions, and the role of dysbiosis in carcinogenesis. Finally, we discuss possible interventions and approaches using which the oral microbiome could be leveraged towards precision-based oral cancer therapeutics.
Collapse
Affiliation(s)
- Snehal Kadam
- Human-Relevant Infection Biology Group, Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Madhusoodhanan Vandana
- Human-Relevant Infection Biology Group, Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Sudhanshu Patwardhan
- Centre for Health Research and Education, University of Southampton Science Park, Chilworth, Hampshire SO16 7NP, UK
| | - Karishma S Kaushik
- Human-Relevant Infection Biology Group, Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
2
|
Rajagopalan P, Patel K, Jain AP, Nanjappa V, Datta KK, Subbannayya T, Mangalaparthi KK, Kumari A, Manoharan M, Coral K, Murugan S, Nair B, Prasad TSK, Mathur PP, Gupta R, Gupta R, Khanna-Gupta A, Califano J, Sidransky D, Gowda H, Chatterjee A. Molecular alterations associated with chronic exposure to cigarette smoke and chewing tobacco in normal oral keratinocytes. Cancer Biol Ther 2018; 19:773-785. [PMID: 29723088 DOI: 10.1080/15384047.2018.1470724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tobacco usage is a known risk factor associated with development of oral cancer. It is mainly consumed in two different forms (smoking and chewing) that vary in their composition and methods of intake. Despite being the leading cause of oral cancer, molecular alterations induced by tobacco are poorly understood. We therefore sought to investigate the adverse effects of cigarette smoke/chewing tobacco exposure in oral keratinocytes (OKF6/TERT1). OKF6/TERT1 cells acquired oncogenic phenotype after treating with cigarette smoke/chewing tobacco for a period of 8 months. We employed whole exome sequencing (WES) and quantitative proteomics to investigate the molecular alterations in oral keratinocytes chronically exposed to smoke/ chewing tobacco. Exome sequencing revealed distinct mutational spectrum and copy number alterations in smoke/ chewing tobacco treated cells. We also observed differences in proteomic alterations. Proteins downstream of MAPK1 and EGFR were dysregulated in smoke and chewing tobacco exposed cells, respectively. This study can serve as a reference for fundamental damages on oral cells as a consequence of exposure to different forms of tobacco.
Collapse
Affiliation(s)
- Pavithra Rajagopalan
- a Institute of Bioinformatics, International Tech Park , Bangalor , India.,b School of Biotechnology , Kalinga Institute of Industrial Technology , Bhubaneswar , India
| | - Krishna Patel
- a Institute of Bioinformatics, International Tech Park , Bangalor , India.,c School of Biotechnology , Amrita Vishwa Vidyapeetham , Kollam , India
| | - Ankit P Jain
- a Institute of Bioinformatics, International Tech Park , Bangalor , India.,b School of Biotechnology , Kalinga Institute of Industrial Technology , Bhubaneswar , India
| | | | - Keshava K Datta
- a Institute of Bioinformatics, International Tech Park , Bangalor , India
| | | | - Kiran K Mangalaparthi
- a Institute of Bioinformatics, International Tech Park , Bangalor , India.,c School of Biotechnology , Amrita Vishwa Vidyapeetham , Kollam , India
| | | | | | | | | | - Bipin Nair
- c School of Biotechnology , Amrita Vishwa Vidyapeetham , Kollam , India
| | - T S Keshava Prasad
- a Institute of Bioinformatics, International Tech Park , Bangalor , India.,e NIMHANS-IOB Bioinformatics and Proteomics Laboratory , Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore , India.,f Center for Systems Biology and Molecular Medicine , Yenepoya , Mangalore , India
| | - Premendu P Mathur
- b School of Biotechnology , Kalinga Institute of Industrial Technology , Bhubaneswar , India.,g Dept. of Biochemistry & Molecular Biology , School of Life Sciences, Pondicherry University , Pondicherry , India
| | - Ravi Gupta
- d Medgenome Labs Pvt. Ltd. , Bangalore , India
| | - Rohit Gupta
- d Medgenome Labs Pvt. Ltd. , Bangalore , India
| | | | - Joseph Califano
- h Department of Surgery , UC San Diego, Moores Cancer Center , La Jolla , CA , USA
| | - David Sidransky
- i Department of Otolaryngology-Head and Neck Surgery , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Harsha Gowda
- a Institute of Bioinformatics, International Tech Park , Bangalor , India
| | - Aditi Chatterjee
- a Institute of Bioinformatics, International Tech Park , Bangalor , India
| |
Collapse
|
3
|
Minchenko DO, Riabovol OO, Ratushna OO, Minchenko OH. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition. Endocr Regul 2017; 51:8-19. [PMID: 28222026 DOI: 10.1515/enr-2017-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. METHODS The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. RESULTS Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. CONCLUSIONS Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes possibly contribute to the suppression of the cell proliferation. Most of these genes are regulated by hypoxia and preferentially through IRE1 signaling pathway of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- D O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| | - O O Riabovol
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O O Ratushna
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Nanjappa V, Renuse S, Sathe GJ, Raja R, Syed N, Radhakrishnan A, Subbannayya T, Patil A, Marimuthu A, Sahasrabuddhe NA, Guerrero-Preston R, Somani BL, Nair B, Kundu GC, Prasad TK, Califano JA, Gowda H, Sidransky D, Pandey A, Chatterjee A. Chronic exposure to chewing tobacco selects for overexpression of stearoyl-CoA desaturase in normal oral keratinocytes. Cancer Biol Ther 2015; 16:1593-603. [PMID: 26391970 PMCID: PMC4846103 DOI: 10.1080/15384047.2015.1078022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/24/2015] [Accepted: 07/26/2015] [Indexed: 01/10/2023] Open
Abstract
Chewing tobacco is a common practice in certain socio-economic sections of southern Asia, particularly in the Indian subcontinent and has been well associated with head and neck squamous cell carcinoma. The molecular mechanisms of chewing tobacco which leads to malignancy remains unclear. In large majority of studies, short-term exposure to tobacco has been evaluated. From a biological perspective, however, long-term (chronic) exposure to tobacco mimics the pathogenesis of oral cancer more closely. We developed a cell line model to investigate the chronic effects of chewing tobacco. Chronic exposure to tobacco resulted in higher cellular proliferation and invasive ability of the normal oral keratinocytes (OKF6/TERT1). We carried out quantitative proteomic analysis of OKF6/TERT1 cells chronically treated with chewing tobacco compared to the untreated cells. We identified a total of 3,636 proteins among which expression of 408 proteins were found to be significantly altered. Among the overexpressed proteins, stearoyl-CoA desaturase (SCD) was found to be 2.6-fold overexpressed in the tobacco treated cells. Silencing/inhibition of SCD using its specific siRNA or inhibitor led to a decrease in cellular proliferation, invasion and colony forming ability of not only the tobacco treated cells but also in a panel of head and neck cancer cell lines. These findings suggest that chronic exposure to chewing tobacco induced carcinogenesis in non-malignant oral epithelial cells and SCD plays an essential role in this process. The current study provides evidence that SCD can act as a potential therapeutic target in head and neck squamous cell carcinoma, especially in patients who are users of tobacco.
Collapse
Affiliation(s)
- Vishalakshi Nanjappa
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Amrita School of Biotechnology; Amrita University; Kollam, India
| | - Santosh Renuse
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Amrita School of Biotechnology; Amrita University; Kollam, India
| | - Gajanan J Sathe
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Manipal University; Madhav Nagar; Manipal, India
| | - Remya Raja
- Institute of Bioinformatics; International Technology Park; Bangalore, India
| | - Nazia Syed
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Department of Biochemistry and Molecular Biology; Pondicherry University; Puducherry, India
| | - Aneesha Radhakrishnan
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Department of Biochemistry and Molecular Biology; Pondicherry University; Puducherry, India
| | - Tejaswini Subbannayya
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Amrita School of Biotechnology; Amrita University; Kollam, India
| | - Arun Patil
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- School of Biotechnology; KIIT University; Bhubaneswar, India
| | | | | | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Babu L Somani
- Institute of Bioinformatics; International Technology Park; Bangalore, India
| | - Bipin Nair
- Amrita School of Biotechnology; Amrita University; Kollam, India
| | - Gopal C Kundu
- National Center for Cell Science (NCCS); NCCS Complex; Pune, India
| | - T Keshava Prasad
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Amrita School of Biotechnology; Amrita University; Kollam, India
- YU-IOB Center for Systems Biology and Molecular Medicine; Yenepoya University; Mangalore, India
| | - Joseph A Califano
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Milton J. Dance Head and Neck Center; Greater Baltimore Medical Center; Baltimore, MD USA
| | - Harsha Gowda
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine; Yenepoya University; Mangalore, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Department of Biological Chemistry; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Department of Pathology; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Aditi Chatterjee
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine; Yenepoya University; Mangalore, India
| |
Collapse
|
5
|
Clinical significance of altered expression of β-catenin and E-cadherin in oral dysplasia and cancer: potential link with ALCAM expression. PLoS One 2013; 8:e67361. [PMID: 23840677 PMCID: PMC3696121 DOI: 10.1371/journal.pone.0067361] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/16/2013] [Indexed: 01/23/2023] Open
Abstract
Background Perturbations in cell adhesion molecules are linked to alterations in cadherin-catenin complexes and likely play major roles in invasion and metastasis; their impact on early precancerous stages remains yet unknown. We showed ALCAM overexpression in early oral lesions and its cytoplasmic accumulation in oral squamous cell carcinoma (OSCC) to be a predictor of disease progression and poor prognosis. This study tested the hypothesis that alterations in E-cadherin and β -catenin expressions are early events in oral tumorigenesis, associated with disease prognosis, and correlate with perturbations in ALCAM expression. Methods Expressions of E-cadherin and β-catenin were analyzed in the same cohort of 105 OSCCs, 76 oral lesions and 30 normal oral tissues by immunohistochemistry and correlated with clinicopathological parameters and prognosis. The effect of siRNA mediated ALCAM knockdown on E-cadherin and β -catenin was determined using western blot, confocal microscopy and RT-PCR analysis in oral cancer cells. Results Significant loss of membranous E-cadherin and β-catenin expression was observed from normal, hyperplasia, dysplasia to OSCCs (ptrend <0.001); and correlated with cytoplasmic ALCAM accumulation in OSCCs (p = 0.006). Multivariate analysis revealed β-catenin membrane loss and ALCAM/β-cateninnuclear/cytoplasmic accumulation to be significant predictors for late clinical stage (p<0.001, OR = 8.7; p = 0.006, OR = 9.9, respectively) and nodal metastasis (p = 0.003, OR = 3.8; p = 0.025, OR = 3.4 respectively). Cox’s regression showed E-cadherin membrane loss/ALCAM cytoplasmic expression [p<0.001; HR = 4.8] to be independent adverse prognosticators in OSCCs. siRNA mediated silencing of ALCAM resulted in concurrent increase in E-cadherin and β-catenin both at the transcript and protein levels. Conclusions Losses of E-cadherin and β-catenin expressions are early events in oral tumorigenesis; their associations with aggressive tumor behavior and disease recurrence underscore their potential as prognostic markers. Correlation of loss of E-cadherin and β-catenin with cytoplasmic ALCAM accumulation both in vitro and in in vivo suggests that these dynamic changes in cell adhesion system may play pivotal role in oral cancer.
Collapse
|
6
|
Kaur J, Sawhney M, Dattagupta S, Shukla NK, Srivastava A, Ralhan R. Clinical significance of phosphatidyl inositol synthase overexpression in oral cancer. BMC Cancer 2010; 10:168. [PMID: 20426864 PMCID: PMC2873392 DOI: 10.1186/1471-2407-10-168] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 04/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We reported increased levels of phosphatidyl inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST) exposure. METHODS Tissue microarray (TMA) Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. RESULTS Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000). Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005) and tobacco consumption (p = 0.03, OR = 9.0). Exposure of oral cell systems to smokeless tobacco (ST) in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K) and cyclin D1 levels. CONCLUSION Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco.
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Biochemistry, All India Institute for Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | | | | | | | | | | |
Collapse
|
7
|
Sawhney M, Matta A, Macha MA, Kaur J, DattaGupta S, Shukla NK, Ralhan R. Cytoplasmic accumulation of activated leukocyte cell adhesion molecule is a predictor of disease progression and reduced survival in oral cancer patients. Int J Cancer 2009; 124:2098-105. [PMID: 19142865 DOI: 10.1002/ijc.24192] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) has been proposed to function as a cell surface sensor for cell density, controlling the transition between local cell proliferation and tissue invasion in cancer progression. Herein, we determined ALCAM expression in 107 oral squamous cell carcinomas (OSCCs), 78 oral lesions (58 hyperplasias and 20 dysplasias) and 30 histologically normal oral tissues using immunohistochemistry and correlated with clinicopathological parameters. Significant increase in ALCAM immunopositivity was observed from normal oral mucosa, hyperplasia, dysplasia to OSCCs (p(trend) < 0.001). Increased ALCAM expression was observed in cytoplasm of epithelial cells as early as in hyperplasia (p = 0.001, OR = 3.8). Sixty-five of 107 (61%) OSCCs showed significant overexpression of ALCAM protein in cytoplasm/membrane of tumor cells (p = 0.043; OR = 3.3) in comparison with the normal oral tissues. Among OSCCs, cytoplasmic ALCAM was associated with advanced tumor size, tumor stage and tobacco consumption. Importantly, cytoplasmic ALCAM was an independent predictor of poor prognosis of OSCCs in multivariate analysis (p = 0.012, OR = 6.2). In an attempt to understand the molecular basis of cytoplasmic localization of ALCAM, 14-3-3 zeta and 14-3-3 sigma were identified as its novel binding partners in oral cancer cells. In conclusion, increased expression of ALCAM is an early event in oral tumorigenesis; its cytoplasmic accumulation in tumor cells is a predictor of poor prognosis of OSCCs, underscoring its potential as a candidate prognostic marker for oral cancer.
Collapse
Affiliation(s)
- Meenakshi Sawhney
- Department of Biochemistry, Institute of Rotary Cancer Hospital, All India Institute for Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Chattopadhyay I, Kapur S, Purkayastha J, Phukan R, Kataki A, Mahanta J, Saxena S. Gene expression profile of esophageal cancer in North East India by cDNA microarray analysis. World J Gastroenterol 2007; 13:1438-44. [PMID: 17457978 PMCID: PMC4146931 DOI: 10.3748/wjg.v13.i9.1438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/29/2006] [Accepted: 01/26/2007] [Indexed: 02/07/2023] Open
Abstract
AIM To identify alterations in genes and molecular functional pathways in esophageal cancer in a high incidence region of India where there is a widespread use of tobacco and betel quid with fermented areca nuts. METHODS Total RNA was isolated from tumor and matched normal tissue of 16 patients with esophageal squamous cell carcinoma. Pooled tumor tissue RNA was labeled with Cy3-dUTP and pooled normal tissue RNA was labeled with Cy5-dUTP by direct labeling method. The labeled probes were hybridized with human 10K cDNA chip and expression profiles were analyzed by Genespring GX V 7.3 (Silicon Genetics). RESULTS Nine hundred twenty three genes were differentially expressed. Of these, 611 genes were upregulated and 312 genes were downregulated. Using stringent criteria (P < or = 0.05 and > or = 1.5 fold change), 127 differentially expressed genes (87 upregulated and 40 downregulated) were identified in tumor tissue. On the basis of Gene Ontology, four different molecular functional pathways (MAPK pathway, G-protein coupled receptor family, ion transport activity, and serine or threonine kinase activity) were most significantly upregulated and six different molecular functional pathways (structural constituent of ribosome, endopeptidase inhibitor activity, structural constituent of cytoskeleton, antioxidant activity, acyl group transferase activity, eukaryotic translation elongation factor activity) were most significantly downregulated. CONCLUSION Several genes that showed alterations in our study have also been reported from a high incidence area of esophageal cancer in China. This indicates that molecular profiles of esophageal cancer in these two different geographic locations are highly consistent.
Collapse
Affiliation(s)
- Indranil Chattopadhyay
- Institute of Pathology, Indian Council of Medical Research, Safdarjang Hospital Campus, Post Box No. 4909, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|