1
|
Yu Y, Sun B, Ye X, Wang Y, Zhao M, Song J, Geng X, Marx U, Li B, Zhou X. Hepatotoxic assessment in a microphysiological system: Simulation of the drug absorption and toxic process after an overdosed acetaminophen on intestinal-liver-on-chip. Food Chem Toxicol 2024; 193:115016. [PMID: 39304085 DOI: 10.1016/j.fct.2024.115016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
To compensate the limitation of animal models, new models were proposed for drug safety evaluation to refine and reduce existing models. To mimic drug absorption and metabolism and predict toxicokinetic and toxic effects in an in vitro intestinal-liver microphysiological system (MPS), we constructed an intestinal-liver-on-chip and detected the acute liver injury process after an overdose of acetaminophen (APAP). Caco-2 and HT29-MTX-E12 cell lines were utilized to establish intestinal equivalents, along with HepG2, HUVEC-T1, and THP-1 induced by PMA and human hepatic stellate cell to establish liver equivalents. The APAP concentration was determined using high-performance liquid chromatography, and the toxicokinetic parameters were fitted using the non-compartmental analysis method by Phoenix. Changes in liver injury biomarkers aspartate aminotransferase and alanine aminotransferase, and liver function marker albumin indicated that the short-term culture of the two organs-on-chip model was stable for 4 days. Reactive oxygen species signaling was enhanced after APAP administration, along with decreased mitochondrial membrane potential, activated caspase-3, and enhanced p53 signaling, indicating a toxic response induced by APAP overdose. In the gut-liver MPS model, we fitted the toxicokinetic parameters and simulated the hepatotoxicity procedure following an APAP overdose, which will facilitate the organ-on-chips application in drug toxicity assays.
Collapse
Affiliation(s)
- Yue Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Baiyang Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Xiao Ye
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Yupeng Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Manman Zhao
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Jie Song
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Xingchao Geng
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany.
| | - Bo Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China.
| | - Xiaobing Zhou
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China.
| |
Collapse
|
2
|
Abstract
Numerous drugs have been shown to inhibit the activity of the Bile Salt Export Pump (BSEP in humans, Bsep in animals), and this is now considered to be one of several mechanisms by which idiosyncratic drug-induced liver injury (DILI) may be initiated in susceptible patients. The potential importance of BSEP inhibition by drugs has been recognized by the European Medicines Agency and the International Transporter Consortium, who have recommended that it should be evaluated during drug development when evidence of cholestatic liver injury has been observed in nonclinical safety studies or in human clinical trials. In addition, some pharmaceutical companies have proposed evaluation and minimization of BSEP inhibition during drug discovery, when there is a chemical choice, to help reduce DILI risk. The methods that can be used to assess and quantify BSEP inhibition, and key gaps in our current understanding of the relationship between this process and DILI, are discussed.
Collapse
Affiliation(s)
- J Gerry Kenna
- Safety Science Consultant, Macclesfield, Cheshire, United Kingdom
| |
Collapse
|