1
|
Mogaraju JK. Machine learning strengthened prediction of tracheal, bronchus, and lung cancer deaths due to air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100539-100551. [PMID: 37639104 DOI: 10.1007/s11356-023-29448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
This work pointed out the use of machine learning tools to predict the effect of CO, O3, CH4, and CO2 on TBL (tracheal, bronchus, and lung cancer) deaths from 1990 to 2019. In this study, data from 203 countries/locations were used. We used evaluation metrics like accuracy, area under curve (AUC), recall, precision, and Matthews correlation coefficient (MCC) to determine the prediction efficiency of the models. The models that yielded accuracy between 89 and 90 were selected in this study. The essential features in the prediction process were extracted, and it was found that CO influenced the prediction process. Extra trees classifier, random forest classifier, gradient boosting classifier, and light gradient boosting machine were selected from 14 other classifiers based on the accuracy metric. The best-performing models, according to our benchmark standards, are the extra trees classifier (90.83%), random forest classifier (89.17%), gradient boosting classifier (89.17%), and light gradient boosting machine (89.17). We conclude that machine learning models can be used in predicting mortality, i.e., the number of deaths, and could assist us in predicting the role of air pollutants on TBL deaths globally.
Collapse
Affiliation(s)
- Jagadish Kumar Mogaraju
- International Union for Conservation of Nature Commission on Ecosystem Management, Agro-ecosystems Specialist Group, New Delhi, 110001, India.
| |
Collapse
|
2
|
Eden MJ, Matz J, Garg P, Gonzalez MP, McElderry K, Wang S, Gollner MJ, Oakes JM, Bellini C. Prolonged smoldering Douglas fir smoke inhalation augments respiratory resistances, stiffens the aorta, and curbs ejection fraction in hypercholesterolemic mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160609. [PMID: 36470384 PMCID: PMC10699119 DOI: 10.1016/j.scitotenv.2022.160609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
While mounting evidence suggests that wildland fire smoke (WFS) inhalation may increase the burden of cardiopulmonary disease, the occupational risk of repeated exposure during wildland firefighting remains unknown. To address this concern, we evaluated the cardiopulmonary function in mice following a cumulative exposure to lab-scale WFS equivalent to a mid-length wildland firefighter (WLFF) career. Dosimetry analysis indicated that 80 exposure hours at a particulate concentration of 22 mg/m3 yield in mice the same cumulative deposited mass per unit of lung surface area as 3600 h of wildland firefighting. To satisfy this condition, male Apoe-/- mice were whole-body exposed to either air or smoldering Douglas fir smoke (DFS) for 2 h/day, 5 days/week, over 8 consecutive weeks. Particulate size in DFS fell within the respirable range for both mice and humans, with a count median diameter of 110 ± 20 nm. Expiratory breath hold in mice exposed to DFS significantly reduced their minute volume (DFS: 27 ± 4; Air: 122 ± 8 mL/min). By the end of the exposure time frame, mice in the DFS group exhibited a thicker (DFS: 109 ± 3; Air: 98 ± 3 μm) and less distensible (DFS: 23 ± 1; Air: 28 ± 1 MPa-1) aorta with reduced diastolic blood augmentation capacity (DFS: 53 ± 2; Air: 63 ± 2 kPa). Cardiac magnetic resonance imaging further revealed larger end-systolic volume (DFS: 14.6 ± 1.1; Air: 9.9 ± 0.9 μL) and reduced ejection-fraction (DFS: 64.7 ± 1.0; Air: 75.3 ± 0.9 %) in mice exposed to DFS. Consistent with increased airway epithelium thickness (DFS: 10.4 ± 0.8; Air: 7.6 ± 0.3 μm), airway Newtonian resistance was larger following DFS exposure (DFS: 0.23 ± 0.03; Air: 0.20 ± 0.03 cmH2O-s/mL). Furthermore, parenchyma mean linear intercept (DFS: 36.3 ± 0.8; Air: 33.3 ± 0.8 μm) and tissue thickness (DFS: 10.1 ± 0.5; Air: 7.4 ± 0.7 μm) were larger in DFS mice. Collectively, mice exposed to DFS manifested early signs of cardiopulmonary dysfunction aligned with self-reported events in mid-career WLFFs.
Collapse
Affiliation(s)
- Matthew J Eden
- Department of Bioengineering, Northeastern University, MA, USA
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, MA, USA
| | - Priya Garg
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | | | - Siyan Wang
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Michael J Gollner
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, MA, USA.
| |
Collapse
|
3
|
Huang KC, Li JC, Wang SM, Cheng CH, Yeh CH, Lin LS, Chiu HY, Chang CY, Chuu JJ. The effects of carbon monoxide releasing molecules on paraquat-induced pulmonary interstitial inflammation and fibrosis. Toxicology 2021; 456:152750. [PMID: 33737140 DOI: 10.1016/j.tox.2021.152750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023]
Abstract
Paraquat, an herbicide used extensively worldwide, can cause severe toxicity in humans and animals, leading to irreversible, lethal lung fibrosis. The potential of CO-releasing molecules (CORMs), substances that release CO (Carbon monoxide) within animal tissues, for treating paraquat-induced ROS generation and inflammation is investigated here. Our results show that the fast CO releaser CORM-3 (4-20 μM) acts as a potential scavenger of free radicals and decreases fibrosis progression by inhibiting paraquat-induced overexpression of connective tissue growth factor and angiotensin II in MRC-5 cells. The slow CO releaser CORM-A1 (5 mg/kg) clearly decreased expression of the lung profibrogenic cytokines COX-2, TNF-α, and α-SMA and serum hydroxyproline, resulting in a lower mortality rate in paraquat-treated mice. Mice treated with higher-dose CORM-A1 (10 mg/kg) had relatively intact lung lobes and fewer fibrotic patches by gross observation, with less collagen deposition, mesangial matrix accumulation, and pulmonary fibrosis resulting from the mitigation of TGF-β overexpression. In conclusion, our data demonstrate for the first time that CORM-A1 alleviated the development of the fibrotic process and improved survival rate in mice exposed to PQ, would be an attractive therapeutic approach to attenuate the progression of pulmonary fibrosis following PQ exposure.
Collapse
Affiliation(s)
- Kuo-Ching Huang
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Hospital, Liouying, Tainan, Taiwan; Department of Environmental and Occupational Health, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Jui-Chen Li
- Pharmacy Department, Wei-Gong Memorial Hospital, Miaoli, Taiwan
| | - Shu-Mei Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan
| | - Chia-Hui Cheng
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chun-Hsiang Yeh
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Li-Syun Lin
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Hsin-Yi Chiu
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chia-Yu Chang
- Department of Neurology, Chi-Mei Medical Center, Tainan, Taiwan; Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | - Jiunn-Jye Chuu
- Pharmacy Department, Wei-Gong Memorial Hospital, Miaoli, Taiwan; Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| |
Collapse
|
4
|
Sant’Ana PG, Maia AF, Castardeli C, Mill JG, Baker JS, Bocalini DS, Castardeli E. Physical training attenuates right ventricular dysfunction in rats exposed to cigarette smoke. MOTRIZ: REVISTA DE EDUCACAO FISICA 2021. [DOI: 10.1590/s1980-657420210000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Adriano F. Maia
- Universidade Federal do Espírito Santo, Brazil; Universidade Federal do Espírito Santo, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Van Vliet EDS, Kinney PL, Owusu-Agyei S, Schluger NW, Ae-Ngibise KA, Whyatt RM, Jack DW, Agyei O, Chillrud SN, Boamah EA, Mujtaba M, Asante KP. Current respiratory symptoms and risk factors in pregnant women cooking with biomass fuels in rural Ghana. ENVIRONMENT INTERNATIONAL 2019; 124:533-540. [PMID: 30685455 PMCID: PMC7069526 DOI: 10.1016/j.envint.2019.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND More than 75% of the population in Ghana relies on biomass fuels for cooking and heating. Household air pollution (HAP) emitted from the incomplete combustion of these fuels has been associated with adverse health effects including respiratory effects in women that can lead to chronic obstructive pulmonary disease (COPD), a major contributor to global HAP-related mortality. HAP is a modifiable risk factor in the global burden of disease, exposure to which can be reduced. OBJECTIVE This study assessed the prevalence of respiratory symptoms, as well as associations between respiratory symptoms and HAP exposure, as measured using continuous personal carbon monoxide (CO), in nonsmoking pregnant women in rural Ghana. METHODS We analyzed current respiratory health symptoms and CO exposures upon enrollment in a subset (n = 840) of the population of pregnant women cooking with biomass fuels and enrolled in the GRAPHS randomized clinical control trial. Personal CO was measured using Lascar continuous monitors. Associations between CO concentrations as well as other sources of pollution exposures and respiratory health symptoms were estimated using logistic regression models. CONCLUSION There was a positive association between CO exposure per 1 ppm increase and a composite respiratory symptom score of current cough (lasting >5 days), wheeze and/or dyspnea (OR: 1.2, p = 0.03). CO was also positively associated with wheeze (OR: 1.3, p = 0.05), phlegm (OR: 1.2, p = 0.08) and reported clinic visit for respiratory infection in past 4 weeks (OR: 1.2, p = 0.09). Multivariate models showed significant associations between second-hand tobacco smoke and a composite outcome (OR: 2.1, p < 0.01) as well as individual outcomes of cough >5 days (OR: 3.1, p = 0.01), wheeze (OR: 2.7, p < 0.01) and dyspnea (OR: 2.2, p = 0.01). Other covariates found to be significantly associated with respiratory outcomes include involvement in charcoal production business and dyspnea, and involvement in burning grass/field and wheeze. Results suggest that exposure to HAP increases the risk of adverse respiratory symptoms among pregnant women using biomass fuels for cooking in rural Ghana.
Collapse
Affiliation(s)
| | | | | | - Neil W Schluger
- Columbia University College of Physicians and Surgeons, New York, NY, USA; Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Robin M Whyatt
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Darby W Jack
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Oscar Agyei
- Kintampo Health Research Centre, Kintampo, Ghana
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | | | | | | |
Collapse
|
6
|
Passive smoking at home increased the risk of gestational diabetes mellitus in China. J Public Health (Oxf) 2018. [DOI: 10.1007/s10389-018-1002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
7
|
Waldum HL, Öberg K, Sørdal ØF, Sandvik AK, Gustafsson BI, Mjønes P, Fossmark R. Not only stem cells, but also mature cells, particularly neuroendocrine cells, may develop into tumours: time for a paradigm shift. Therap Adv Gastroenterol 2018; 11:1756284818775054. [PMID: 29872453 PMCID: PMC5974566 DOI: 10.1177/1756284818775054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/03/2018] [Indexed: 02/04/2023] Open
Abstract
Stem cells are considered the origin of neoplasms in general, and malignant tumours in particular, and the stage at which the stem cells stop their differentiation determines the degree of malignancy. However, there is increasing evidence supporting an alternative paradigm. Tumours may develop by dedifferentiation from mature cells able to proliferate. Studies of gastric carcinogenesis demonstrate that mature neuroendocrine (NE) cells upon long-term overstimulation may develop through stages of hyperplasia, dysplasia, and rather benign tumours, into highly malignant carcinomas. Dedifferentiation of cells may change the histological appearance and impede the identification of the cellular origin, as seen with gastric carcinomas, which in many cases are dedifferentiated neuroendocrine tumours. Finding the cell of origin is important to identify risk factors for cancer, prevent tumour development, and tailor treatment. In the present review, we focus not only on gastric tumours, but also evaluate the role of neuroendocrine cells in tumourigenesis in two other foregut-derived organs, the lungs and the pancreas, as well as in the midgut-derived small intestine.
Collapse
Affiliation(s)
- Helge L. Waldum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, N-7491, Norway Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Kjell Öberg
- Department of Endocrine Oncology Uppsala University and University Hospital, Uppsala, Sweden
| | - Øystein F. Sørdal
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Arne K. Sandvik
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Bjørn I. Gustafsson
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Patricia Mjønes
- epartment of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St. Olav’s University Hospital, Trondheim, Norway
| | - Reidar Fossmark
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| |
Collapse
|
8
|
Fujimoto H, Tsuji H, Okubo C, Fukuda I, Nishino T, Lee KM, Renne R, Yoshimura H. Biological responses in rats exposed to mainstream smoke from a heated cigarette compared to a conventional reference cigarette. Inhal Toxicol 2015; 27:224-36. [PMID: 25969858 DOI: 10.3109/08958378.2015.1027799] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The heated cigarette (HC) generates mainstream smoke by vaporizing the components of the tobacco rod using a carbon heat source at the cigarette tip. Mainstream smoke of HC contains markedly less chemical constituents compared to combusted cigarettes. Mainstream smoke from HC was generated under Health Canada Intense regimen and its biological effects were compared to those of Reference (3R4F) cigarettes, using nose-only 5-week and 13-week inhalation studies. In the 13-week study, SD rats were necropsied following exposure to mainstream smoke from each cigarette at 200, 600 or 1000 µg wet total particulate matter/L for 1 h/day, 7 days/week or following a 13-week recovery period. Histopathological changes in the respiratory tract were significantly lesser in HC groups; e.g. respiratory epithelial hyperplasia in the nasal cavity and accumulation of pigmented macrophages in alveoli. After a 13-week recovery, the lesions were completely or partially regressed, except for accumulation of pigmented macrophages in alveoli, in both HC and 3R4F groups. In the 5-week study, SD rats were necropsied following exposure to mainstream smoke of either cigarette at 600 or 1000 µg/L for 1 h, two times/day (with 30 min interval), 7 days/week or following a 4-week recovery period. Bronchoalveolar lavage fluid (BALF) analysis of neutrophil percentages and enzyme levels like γ-GT, ALP and LDH indicated that pulmonary inflammation was significantly less in HC groups compared to 3R4F groups. In conclusion, HC demonstrated significantly lower biological effects compared to 3R4F, based on the BALF parameters and histopathology.
Collapse
Affiliation(s)
- Hitoshi Fujimoto
- Product and Science Division, R&D Group, Japan Tobacco Inc. , Kanagawa , Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yan XS, D'Ruiz C. Effects of using electronic cigarettes on nicotine delivery and cardiovascular function in comparison with regular cigarettes. Regul Toxicol Pharmacol 2014; 71:24-34. [PMID: 25460033 DOI: 10.1016/j.yrtph.2014.11.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 01/09/2023]
Abstract
The development of electronic cigarettes (e-cigs) has the potential to offer a less harmful alternative for tobacco users. This clinical study was designed to characterize e-cig users' exposure to nicotine, and to investigate the acute effects of e-cigs on the hemodynamic measurements (blood pressure and heart rate) in comparison with the effects of regular smoking. Five e-cigs and one Marlboro® cigarette were randomized for twenty-three participants under two exposure scenarios from Day 1 to Day 11: half-hour controlled administration and one hour ad lib use. The nicotine plasma concentrations after 1.5h of product use (C90) were significantly lower in the users of e-cigs than of Marlboro® cigarettes. The combination of glycerin and propylene glycol as the vehicle facilitated delivery of more nicotine than glycerin alone. The heart rate, systolic and diastolic blood pressure were significantly elevated after use of Marlboro® cigarettes, but the elevation was less after use of most of the e-cigs. Use of e-cigs had no impact on the exhaled CO levels, whereas the Marlboro® cigarette significantly increased the exhaled CO more than 8 times above the baseline. In conclusion, e-cigs could be a less harmful alternative for tobacco users.
Collapse
Affiliation(s)
- X Sherwin Yan
- Scientific Affairs, A.W. Spears Research Center, Lorillard Tobacco Company, Greensboro, NC, United States.
| | - Carl D'Ruiz
- Scientific Affairs, A.W. Spears Research Center, Lorillard Tobacco Company, Greensboro, NC, United States
| |
Collapse
|
10
|
Effects of exercise training on pulmonary vessel muscularization and right ventricular function in an animal model of COPD. Respir Res 2014; 15:117. [PMID: 25261051 PMCID: PMC4181603 DOI: 10.1186/s12931-014-0117-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/17/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Right ventricular dysfunction in COPD is common, even in the absence of pulmonary hypertension. The aim of the present study was to examine the effects of high intensity interval training (HIIT) on right ventricular (RV) function, as well as pulmonary blood vessel remodeling in a mouse model of COPD. METHODS 42 female A/JOlaHsd mice were randomized to exposure to either cigarette smoke or air for 6 hours/day, 5 days/week for 14 weeks. Mice from both groups were further randomized to sedentariness or HIIT for 4 weeks. Cardiac function was evaluated by echocardiography and muscularization of pulmonary vessel walls by immunohistochemistry. RESULTS Smoke exposure induced RV systolic dysfunction demonstrated by reduced tricuspid annular plane systolic excursion. HIIT in smoke-exposed mice reversed RV dysfunction. There were no significant effects on the left ventricle of neither smoke exposure nor HIIT. Muscularization of the pulmonary vessels was reduced after exercise intervention, but no significant effects on muscularization were observed from smoke exposure. CONCLUSIONS RV function was reduced in mice exposed to cigarette smoke. No Increase in pulmonary vessel muscularization was observed in these mice, implying that other mechanisms caused the RV dysfunction. HIIT attenuated the RV dysfunction in the smoke exposed mice. Reduced muscularization of the pulmonary vessels due to HIIT suggests that exercise training not only affects the heart muscle, but also has important effects on the pulmonary vasculature.
Collapse
|
11
|
Pang Q, Dou L, Pan X, Zeng S, He J, Xu W, Zeng Y. Methylene chloride protects against cecal ligation and puncture-induced acute lung injury by modulating inflammatory mediators. Int Immunopharmacol 2010; 10:929-32. [PMID: 20483385 DOI: 10.1016/j.intimp.2010.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 04/15/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
Recent studies suggest that exogenously administered CO is beneficial for the resolution of acute pulmonary inflammation. In this study, we assessed the role of CO donor, methylene chloride (MC), on modulation of lung inflammation during sepsis. Acute lung injury in Sprague-Dawley rats was induced by cecal ligation and perforation (CLP). MC (100mg/kg) was intragastrically administered 2h before CLP induction. Lung tissues and lavage samples were isolated for biochemical determinations and histological measurements 10h after CLP operation. In addition, we investigated survival rate with the other 40 rats. Intragastric administration with MC significantly decreased morbidity and mortality of CLP-induced ALI as confirmed by blinded histological changes, myeloperoxidase activity, mortality, and the content of TNF-alpha and IL-10. This protective effect could be abolished by an MC inhibitor, disulfiram. These results suggested that MC has obvious protective effects against CLP-induced ALI in rats. The mechanism of the protective effects partly involves modulating inflammatory mediators.
Collapse
Affiliation(s)
- Qingfeng Pang
- Department of Pathophysiology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Davutoglu V, Zengin S, Sari I, Yildirim C, Al B, Yuce M, Ercan S. Chronic carbon monoxide exposure is associated with the increases in carotid intima-media thickness and C-reactive protein level. TOHOKU J EXP MED 2010; 219:201-6. [PMID: 19851048 DOI: 10.1620/tjem.219.201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Being the most common cause of death from poisoning worldwide, cardiovascular manifestations of acute carbon monoxide (CO) poisoning have been subject of various studies but current evidence about effects of chronic CO exposure on atherosclerosis is limited which is very common. We aimed to investigate association of chronic CO exposure with atherosclerosis by measuring carotid intima-media thickness (CIMT) and high-sensitivity C-reactive protein (hs-CRP). Forty healthy male non-smoker indoor barbecue workers (mean age; 33.0 +/- 9.0 years) working in different restaurants for at least three years and 48 age-matched healthy men (mean age; 34.3 +/- 6.6 years) enrolled in the study. Clinical characteristics of indoor barbecue workers and control group were comparable in terms of body mass index, blood pressure, and lipid profile. However, carboxyhemoglobin (COHb) (6.4 +/- 1.5% vs. 2.0 +/- 1.1%), hs-CRP (2.7 +/- 2.0 mg/L vs. 1.1 +/- 0.8 mg/L) and CIMT (1.1 +/- 0.3 mm vs. 0.9 +/- 0.1 mm) were higher in indoor barbecue workers (p < 0.001 for each). In Pearson correlation analysis, CIMT was correlated with COHb concentration (r = 0.635, p < 0.001) and hs-CRP level (r = 0.466, p < 0.001). Among indoor barbecue workers, the years worked (years exposed to CO) are correlated with COHb, hs-CRP and CIMT. In multivariate analysis, COHb concentration is the only independent predictor of CIMT (beta = 0.571, p < 0.001). The increased CIMT and hs-CRP in indoor barbecue workers suggest that chronic CO exposure may increase the risk of atherosclerotic cardiovascular events.
Collapse
Affiliation(s)
- Vedat Davutoglu
- Department of Cardiology, Gaziantep University, School of Medicine, Gaziantep, Turkey
| | | | | | | | | | | | | |
Collapse
|
13
|
Goniewicz MŁ, Czogała J, Kośmider L, Koszowski B, Zielińska-Danch W, Sobczak A. Exposure to carbon monoxide from second-hand tobacco smoke in Polish pubs. Cent Eur J Public Health 2009; 17:220-2. [PMID: 20377053 PMCID: PMC2852900 DOI: 10.21101/cejph.a3540] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Carbon monoxide (CO) is one of the more toxic agents present in the gas phase of second-hand tobacco smoke. There is sufficient evidence suggesting that passive smokers are involuntarily poisoned by low CO concentrations. At lower doses, CO affects the central nervous system leading to deterioration in visual perception, manual dexterity, learning, driving performance, and attention level. The effects of chronic inhalation of CO at doses corresponding to tobacco smoking on the cardiovascular system are not well investigated but might involve myocardial hypertrophy and arrhythmias. In people with pre-existing disease, CO pollution alone may result in increased morbidity and mortality. In the study CO levels were monitored in 22 Polish pubs. The temporary CO concentration varied in examined pubs from 0 to 33.11 ppm. The average 8-hours CO concentration varied from 0.21 to 10.20 ppm. Nine percent of pubs exceeded the WHO or EU limit value at some point during the monitoring process. The average weekly CO concentration in all examined microenvironments varied from 0 to 4.80 ppm. The most important factor influencing CO concentration was air-exchange through open doors and windows. In pubs where doors and windows were closed, the following statistical important factors influencing CO concentration were found: 1. the number of smokers present in the pub, 2. the pub's capaciousness, and 3. and the pub's location. The results of the study show that second-hand tobacco smoke is a significant source of CO in Polish pubs. Passive smokers in Polish pubs might be exposed to very high CO concentration exceeding EU reference value.
Collapse
Affiliation(s)
- Maciej Łukasz Goniewicz
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Laboratory Medicine, Medical University of Silesia, Sosnowiec, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
Zheng H, Liu Y, Huang T, Fang Z, Li G, He S. Development and characterization of a rat model of chronic obstructive pulmonary disease (COPD) induced by sidestream cigarette smoke. Toxicol Lett 2009; 189:225-34. [PMID: 19524650 DOI: 10.1016/j.toxlet.2009.06.850] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/31/2009] [Accepted: 06/04/2009] [Indexed: 02/05/2023]
Abstract
Cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) has been emerging as a great health problem in China. However, lack of appropriate animal model slows down the progress in understanding pathogenesis of the disease. The aim of current study is to establish and evaluate a more adequate rat model of COPD. Study was performed with rats exposed to sidestream cigarette smoke 2h/d and 7d/wk for 2, 4, 6, 8, 10, 12, 24 and 36 wk in a CS chamber (carbon monoxide concentration was 231+/-11ppm). The lung function was determined by using the forced oscillation technique. Pathologic changes were determined by using histological analyses and mucin measurement. Following 36-wk exposure, airway resistance (Raw) and respiratory system elastance (Ers) in CS group rats was elevated by 28.5% and 37.5%, respectively. Up to 4.1-, 2.3- and 1.4-fold increase in the number of neutrophils, macrophages and lymphocytes was observed in the BALF of CS rats. Using quantitative histomorphology techniques, it was found that mean linear intercept (MLI) and mean alveolar airspace (MAA) of CS rats increased by 44.8% and 43.7%, respectively, indicating the occurrence of emphysema. The characteristics of chronic bronchitis including hyperplasia of bronchial epithelial cells, hypersecretion of mucus and development of peribronchial fibrosis were also found in rat lungs. CS group rats showed 43% body weight gain reduction. To conclude, a more adequate sidestream cigarette smoke rat COPD model was established, which will be beneficial for understanding the pathogenesis of the disease and for evaluation of drug effectiveness.
Collapse
Affiliation(s)
- Hongao Zheng
- Allergy and Inflammation Research Institute, the Key Inmunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xin-ling Road, Shantou, Guangdong, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Lopez IA, Acuna D, Beltran-Parrazal L, Lopez IE, Amarnani A, Cortes M, Edmond J. Evidence for oxidative stress in the developing cerebellum of the rat after chronic mild carbon monoxide exposure (0.0025% in air). BMC Neurosci 2009; 10:53. [PMID: 19580685 PMCID: PMC2700113 DOI: 10.1186/1471-2202-10-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 05/27/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The present study was designed to test the hypothesis that chronic very mild prenatal carbon monoxide (CO) exposure (25 parts per million) subverts the normal development of the rat cerebellar cortex. Studies at this chronic low CO exposure over the earliest periods of mammalian development have not been performed to date. Pregnant rats were exposed chronically to CO from gestational day E5 to E20. In the postnatal period, rat pups were grouped as follows: Group A: prenatal exposure to CO only; group B: prenatal exposure to CO then exposed to CO from postnatal day 5 (P5) to P20; group C: postnatal exposure only, from P5 to P20, and group D, controls (air without CO). At P20, immunocytochemical analyses of oxidative stress markers, and structural and functional proteins were assessed in the cerebellar cortex of the four groups. Quantitative real time PCR assays were performed for inducible (iNOS), neuronal (nNOS), and endothelial (eNOS) nitric oxide synthases. RESULTS Superoxide dismutase-1 (SOD1), SOD2, and hemeoxygenase-1 (HO-1) immunoreactivity increased in cells of the cerebellar cortex of CO-exposed pups. INOS and nitrotyrosine immunoreactivity also increased in blood vessels and Purkinje cells (PCs) of pups from group-A, B and C. By contrast, nNOS immunoreactivity decreased in PCs from group-B. Endothelial NOS immunoreactivity showed no changes in any CO-exposed group. The mRNA levels for iNOS were significantly up-regulated in the cerebellum of rats from group B; however, mRNA levels for nNOS and eNOS remained relatively unchanged in groups A, B and C. Ferritin-H immunoreactivity increased in group-B. Immunocytochemistry for neurofilaments (structural protein), synapsin-1 (functional protein), and glutamic acid decarboxylase (the enzyme responsible for the synthesis of the inhibitory neurotransmitter GABA), were decreased in groups A and B. Immunoreactivity for two calcium binding proteins, parvalbumin and calbindin, remained unchanged. The immunoreactivity of the astrocytic marker GFAP increased after prenatal exposure. CONCLUSION We conclude that exogenously supplied CO during the prenatal period promotes oxidative stress as indicated by the up-regulation of SOD-1, SOD-2, HO-1, Ferritin-H, and iNOS with increased nitrotyrosine in the rat cerebella suggesting that deleterious and protective mechanisms were activated. These changes correlate with reductions of proteins important to cerebellar function: pre-synaptic terminals proteins (synapsin-1), proteins for the maintenance of neuronal size, shape and axonal quality (neurofilaments) and protein involved in GABAergic neurotransmission (GAD). Increased GFAP immunoreactivity after prenatal CO-exposure suggests a glial mediated response to the constant presence of CO. There were differential responses to prenatal vs. postnatal CO exposure: Prenatal exposure seems to be more damaging; a feature exemplified by the persistence of markers indicating oxidative stress in pups at P20, following prenatal only CO-exposure. The continuation of this cellular environment up to day 20 after CO exposure suggests the condition is chronic. Postnatal exposure without prenatal exposure shows the least impact, whereas prenatal followed by postnatal exposure exhibits the most pronounced outcome among the groups.
Collapse
Affiliation(s)
- Ivan A Lopez
- Department of Surgery (Division of Head and Neck), 31-25 Rehabilitation Center, 1000 Veteran Avenue, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dora Acuna
- Mental Retardation Research Center, Neuroscience Research Building, Room 260C, 635 Charles E Young Drive South, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7332, USA
| | - Luis Beltran-Parrazal
- Department of Surgery (Division of Head and Neck), 31-25 Rehabilitation Center, 1000 Veteran Avenue, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ivan E Lopez
- Department of Surgery (Division of Head and Neck), 31-25 Rehabilitation Center, 1000 Veteran Avenue, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Abhimanyu Amarnani
- Department of Surgery (Division of Head and Neck), 31-25 Rehabilitation Center, 1000 Veteran Avenue, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Max Cortes
- Department of Surgery (Division of Head and Neck), 31-25 Rehabilitation Center, 1000 Veteran Avenue, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - John Edmond
- Mental Retardation Research Center, Neuroscience Research Building, Room 260C, 635 Charles E Young Drive South, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7332, USA
| |
Collapse
|
16
|
Nakao A, Sugimoto R, Billiar TR, McCurry KR. Therapeutic antioxidant medical gas. J Clin Biochem Nutr 2008; 44:1-13. [PMID: 19177183 PMCID: PMC2613492 DOI: 10.3164/jcbn.08-193r] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 08/05/2008] [Indexed: 12/12/2022] Open
Abstract
Medical gases are pharmaceutical gaseous molecules which offer solutions to medical needs and include traditional gases, such as oxygen and nitrous oxide, as well as gases with recently discovered roles as biological messenger molecules, such as carbon monoxide, nitric oxide and hydrogen sulphide. Medical gas therapy is a relatively unexplored field of medicine; however, a recent increasing in the number of publications on medical gas therapies clearly indicate that there are significant opportunities for use of gases as therapeutic tools for a variety of disease conditions. In this article, we review the recent advances in research on medical gases with antioxidant properties and discuss their clinical applications and therapeutic properties.
Collapse
Affiliation(s)
- Atsunori Nakao
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
17
|
Waldum HL, Sandvik AK, Brenna E, Fossmark R, Qvigstad G, Soga J. Classification of tumours. J Exp Clin Cancer Res 2008; 27:70. [PMID: 19014574 PMCID: PMC2596779 DOI: 10.1186/1756-9966-27-70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 11/14/2008] [Indexed: 11/10/2022] Open
Abstract
Tumours are classified according to the most differentiated cells with the exception of carcinomas where a few tumour cells show neuroendocrine differentiation. In this case these cells are regarded as redifferentiated tumour cells, and the tumour is not classified as neuroendocrine. However, it is now clear that normal neuroendocrine cells can divide, and that continuous stimulation of such cells results in tumour formation, which during time becomes increasingly malignant. To understand tumourigenesis, it is of utmost importance to recognize the cell of origin of the tumour since knowledge of the growth regulation of that cell may give information about development and thus possible prevention and prophylaxis of the tumour. It may also have implications for the treatment. The successful treatment of gastrointestinal stromal tumours by a tyrosine kinase inhibitor is an example of the importance of a correct cellular classification of a tumour. In the future tumours should not just be classified as for instance adenocarcinomas of an organ, but more precisely as a carcinoma originating from a certain cell type of that organ.
Collapse
Affiliation(s)
- Helge L Waldum
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, Trondheim University Hospital, NO-7006 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
18
|
Bye A, Sørhaug S, Ceci M, Høydal MA, Stølen T, Heinrich G, Tjønna AE, Najjar SM, Nilsen OG, Catalucci D, Grimaldi S, Contu R, Steinshamn S, Condorelli G, Smith GL, Ellingsen O, Waldum H, Wisløff U. Carbon monoxide levels experienced by heavy smokers impair aerobic capacity and cardiac contractility and induce pathological hypertrophy. Inhal Toxicol 2008; 20:635-46. [PMID: 18464052 DOI: 10.1080/08958370701883821] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cigarette smoke contains hundreds of potentially toxic compounds and is an important risk factor for cardiovascular disease. However, the key components responsible for endothelial and myocardial dysfunction have not been fully identified. The objective of the present study was to determine the cardiovascular effects of long-term inhalation of carbon monoxide (CO) administrated to give concentrations in the blood similar to those observed in heavy smokers. Female rats were exposed to either CO or air (control group) (n = 12). The CO group was exposed to 200 ppm CO (100 h/wk) for 18 mo. Rats exposed to CO had 24% lower maximal oxygen uptake, longer (145 vs. 123 microm) and wider (47 vs. 25 microm) cardiomyocytes, reduced cardiomyocyte fractional shortening (12 vs. 7%), and 26% longer time to 50% re-lengthening than controls. In addition, cardiomyocytes from CO-exposed rats had 48% lower intracellular calcium (Ca2 +) amplitude, 22% longer time to Ca2 + decay, 34% lower capacity of sarcoplasmic reticulum Ca2 +-ATPase (SERCA2a), and 37% less t-tubule area compared to controls. Phosphorylation levels of phospholamban at Ser16 and Thr17 were significantly reduced in the CO group, whereas total concentration of phospholamban and SERCA2a were unchanged. Cardiac atrial natriuretic peptide, vascular endothelial growth factor, cyclic guanosine monophosphate, calcineurin, calmodulin, pERK, and pS6 increased, whereas pAkt and pCaMKII delta remained unchanged by CO. Endothelial function and systemic blood pressure were not affected by CO exposure. Long-term CO exposure reduces aerobe capacity and contractile function and leads to pathological hypertrophy. Impaired Ca2 + handling and increased growth factor signaling seem to be responsible for these pathological changes.
Collapse
Affiliation(s)
- Anja Bye
- Department of Circulation and Medical Imaging, Faculty of Medicine, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Foresti R, Bani-Hani MG, Motterlini R. Use of carbon monoxide as a therapeutic agent: promises and challenges. Intensive Care Med 2008; 34:649-58. [PMID: 18286265 DOI: 10.1007/s00134-008-1011-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
Abstract
As a by-product of heme catabolism by the heme oxygenase system, carbon monoxide (CO) has been neglected for many years, and only recently has its role as an essential signaling molecule been appreciated. In the past decade, the use of CO gas in pre-clinical experimental models of disease has produced some remarkable data indicating that its therapeutic delivery to mammals could alleviate inflammatory processes and cardiovascular disorders. However, the inherent toxic nature of CO cannot be ignored, knowing that inhalation of uncontrolled amounts of this gas can ultimately lead to serious systemic complications and neuronal derangements. From a clinical perspective, a key question is whether a safe and therapeutically effective threshold of CO can be reached locally in organs and tissues without delivering potentially toxic amounts through the lung. The advent of CO-releasing molecules (CO-RMs), a group of compounds capable of carrying and liberating controlled quantities of CO in cellular systems, appears a plausible alternative in the attempt to overcome the limitations of CO gas. Although in its infancy and far from being used for clinical applications, the CO-RMs technology is supported by very encouraging biological results and reflected by the chemical versatility of these compounds and their endless potential to be transformed into CO-based pharmaceuticals.
Collapse
Affiliation(s)
- Roberta Foresti
- Vascular Biology Unit, Department of Surgical Research, Northwick Park Institute for Medical Research, HA1 3UJ, Harrow, Middlesex, UK
| | | | | |
Collapse
|
20
|
Sørhaug S, Steinshamn S, Munkvold B, Waldum HL. Release of neuroendocrine products in the pulmonary circulation during intermittent hypoxia in isolated rat lung. Respir Physiol Neurobiol 2008; 162:1-7. [PMID: 18468494 DOI: 10.1016/j.resp.2008.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
The aim of this study was to evaluate the release of neuroendocrine (NE) products into the pulmonary circulation during intermittent hypoxia (IH) in isolated buffer-perfused and ventilated rat lungs. Isolated single-pass perfused rat lungs were repeatedly ventilated with hypoxic (2% O(2)) and normoxic (21% O(2)) gases for 5-min intervals. Perfusate collected during the study was analysed for bombesin-like-peptides (BLPs) and serotonin. In addition, immunohistochemical evaluation of the neuropeptides calcitonin gene-related peptide (CGRP) and chromogranin A (CgA) in the lung was performed. During IH, perfusate levels of BLPs decreased compared to lungs ventilated with normoxic gas only. After 15 min of IH, perfusate levels of BLPs were significantly lower than at corresponding time in normoxic lungs (2.6+/-0.7 pg ml(-1) versus 9.2+/-1.9 pg ml(-1), p=0.036). No significant difference between the study groups was observed in perfusate levels of serotonin. Immunohistochemical evaluation of the lungs revealed significantly increased number of pulmonary NE cells immunoreactive for CGRP in IH ventilated lungs compared to controls (10.1+/-1.5 neuroepithelial bodies (NEBs) (cm(2))(-1) versus 5.0+/-1.5 NEBs (cm(2))(-1), p=0.032). No change in the immunoreactivity for CgA was observed. The present study suggests that intermittent periods of hypoxia are associated with a rapid physiological modulation of the release of NE products into the pulmonary circulation in an isolated rat lung model.
Collapse
Affiliation(s)
- Sveinung Sørhaug
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | |
Collapse
|
21
|
Ryter SW, Kim HP, Nakahira K, Zuckerbraun BS, Morse D, Choi AMK. Protective functions of heme oxygenase-1 and carbon monoxide in the respiratory system. Antioxid Redox Signal 2007; 9:2157-73. [PMID: 17845132 DOI: 10.1089/ars.2007.1811] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The respiratory system, including the lung and upper airways, succumbs to injury and disease through acute or chronic exposures to adverse environmental agents, in particular, those that promote increased oxidative or inflammatory processes. Cigarette smoke and other forms of particulate or gaseous air pollution, allergens, microorganisms infections, and changes in inspired oxygen may contribute to lung injury. Among the intrinsic defenses of the lung, the stress protein heme oxygenase-1 constitutes an inducible defense mechanism that can protect the lung and its constituent cells against such insults. Heme oxygenases degrade heme to biliverdin-IXalpha, carbon monoxide, and iron, each with candidate roles in cytoprotection. At low concentrations, carbon monoxide can confer similar cyto and tissue-protective effects as endogenous heme oxygenase-1 expression, involving antioxidative, antiinflammatory, antiproliferative, and antiapoptotic effects. Lung protection by heme oxygenase-1 or its enzymatic reaction products has been demonstrated in vitro and in vivo in a number of pulmonary disease models, including acute lung injury, cigarette smoke-induced lung injury/chronic obstructive pulmonary disease, interstitial lung diseases, ischemia/reperfusion injury, and asthma/airway inflammation. This review summarizes recent findings on the functions of heme oxygenase-1 in the respiratory system, with an emphasis on possible roles in disease progression and therapies.
Collapse
Affiliation(s)
- Stefan W Ryter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Lopez IA, Acuna D, Beltran-Parrazal L, Espinosa-Jeffrey A, Edmond J. Oxidative stress and the deleterious consequences to the rat cochlea after prenatal chronic mild exposure to carbon monoxide in air. Neuroscience 2007; 151:854-67. [PMID: 18155845 DOI: 10.1016/j.neuroscience.2007.10.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/28/2007] [Accepted: 11/01/2007] [Indexed: 11/28/2022]
Abstract
Pregnant rats (starting on E5) were exposed chronically to carbon monoxide (CO) from gestational days 5-20. In the postnatal period, rat pups were grouped as follows: group A: prenatal exposure to CO only; group B: prenatal exposure to CO then exposed to CO from postnatal day (P) 5 to P20; group C, control (air without CO). Groups A and B showed similar deleterious effects after CO exposure. At P3, rat pup cochlea from group A showed a normal organization of the organ of Corti. There was no morphological deterioration, or loss of inner or outer hair cells. At P20, animals from group A and B showed vacuolization on the afferent terminals at the basal portion of the cochlea. We found synapsin-1 immunoreactivity (IR) to be decreased in efferent nerve terminals in CO-exposed pups at P3. From P12 to P20, synapsin-1-IR is low in efferent terminals. At P20, type I spiral ganglia neurons and afferent nerve fibers showed decreased neurofilament-IR in CO-exposed groups when compared with controls. Heme oxygenase-1 and superoxide dismutase-1-IR were elevated in the stria vascularis and blood vessels from CO-exposed rat pups at P12 and P20 in group B; in contrast group A showed a comparable expression to controls. Inducible nitric oxide synthase (iNOS) and nitrotyrosine-IR were increased in blood vessels of the cochlea in CO-exposed groups, from P3 to P20. iNOS up-regulation and the presence of nitrotyrosine in blood vessels of the cochlea indicated that CO exposure activates the production of nitric oxide via increased iNOS activity. Prenatal chronic CO exposure promotes oxidative stress in the cochlea blood vessels that in turn is reflected in damage to spiral ganglia neurons and inner hair cells, suggesting for the first time that prenatal exposure to CO at concentrations expected in poorly ventilated environments impairs the development of the inner ear.
Collapse
Affiliation(s)
- I A Lopez
- Surgery Department (Division of Head and Neck), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|