1
|
Urquizu E, Paratusic S, Goyenechea J, Gómez-Canela C, Fumàs B, Pubill D, Raldúa D, Camarasa J, Escubedo E, López-Arnau R. Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits. Int J Mol Sci 2024; 25:12248. [PMID: 39596313 PMCID: PMC11594717 DOI: 10.3390/ijms252212248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The secondary neurotoxicity induced by severe organophosphorus (OP) poisoning, including paraoxon (POX), is associated with cognitive impairments in survivors, who, despite receiving appropriate emergency treatments, may still experience lasting neurological deficits. Thus, the present study provides a survival mouse model of acute and severe POX poisoning to examine secondary neurotoxicity. Swiss CD-1 male mice were injected with POX (4 mg/kg, s.c.) followed by atropine (4 mg/kg, i.p.), pralidoxime (2-PAM; Pyridine-2-aldoxime methochloride) (25 mg/kg, i.p., twice, 1 h apart) and diazepam (5 mg/kg, i.p.), resulting in a survival rate >90% and Racine score of 5-6. Our results demonstrated that the model showed increased lipid peroxidation, downregulation of antioxidant enzymes and astrogliosis in the mouse hippocampus (HP) and prefrontal cortex (PFC), brain areas involved in cognitive functions. Moreover, dopamine (DA) levels were reduced in the hp, but increased in the PFC. Furthermore, the survival mouse model of acute POX intoxication did not exhibit phenotypic manifestations of depression, anxiety or motor incoordination. However, our results demonstrated long-term recognition memory impairments, which are in accordance with the molecular and neurochemical effects observed. In conclusion, this mouse model can aid in researching POX exposure's effects on memory and developing potential countermeasures against the secondary neurotoxicity induced by severe OP poisoning.
Collapse
Affiliation(s)
- Edurne Urquizu
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Selma Paratusic
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Berta Fumàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| |
Collapse
|
2
|
Sobolev VE, Sokolova MO, Jenkins RO, Goncharov NV. Nephrotoxic Effects of Paraoxon in Three Rat Models of Acute Intoxication. Int J Mol Sci 2021; 22:13625. [PMID: 34948422 PMCID: PMC8709234 DOI: 10.3390/ijms222413625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
The delayed effects of acute intoxication by organophosphates (OPs) are poorly understood, and the various experimental animal models often do not take into account species characteristics. The principal biochemical feature of rodents is the presence of carboxylesterase in blood plasma, which is a target for OPs and can greatly distort their specific effects. The present study was designed to investigate the nephrotoxic effects of paraoxon (O,O-diethyl O-(4-nitrophenyl) phosphate, POX) using three models of acute poisoning in outbred Wistar rats. In the first model (M1, POX2x group), POX was administered twice at doses 110 µg/kg and 130 µg/kg subcutaneously, with an interval of 1 h. In the second model (M2, CBPOX group), 1 h prior to POX poisoning at a dose of 130 µg/kg subcutaneously, carboxylesterase activity was pre-inhibited by administration of specific inhibitor cresylbenzodioxaphosphorin oxide (CBDP, 3.3 mg/kg intraperitoneally). In the third model (M3), POX was administered subcutaneously just once at doses of LD16 (241 µg/kg), LD50 (250 µg/kg), and LD84 (259 µg/kg). Animal observation and sampling were performed 1, 3, and 7 days after the exposure. Endogenous creatinine clearance (ECC) decreased in 24 h in the POX2x group (p = 0.011). Glucosuria was observed in rats 24 h after exposure to POX in both M1 and M2 models. After 3 days, an increase in urinary excretion of chondroitin sulfate (CS, p = 0.024) and calbindin (p = 0.006) was observed in rats of the CBPOX group. Morphometric analysis revealed a number of differences most significant for rats in the CBPOX group. Furthermore, there was an increase in the area of the renal corpuscles (p = 0.0006), an increase in the diameter of the lumen of the proximal convoluted tubules (PCT, p = 0.0006), and narrowing of the diameter of the distal tubules (p = 0.001). After 7 days, the diameter of the PCT lumen was still increased in the nephrons of the CBPOX group (p = 0.0009). In the M3 model, histopathological and ultrastructural changes in the kidneys were revealed after the exposure to POX at doses of LD50 and LD84. Over a period from 24 h to 3 days, a significant (p = 0.018) expansion of Bowman's capsule was observed in the kidneys of rats of both the LD50 and LD84 groups. In the epithelium of the proximal tubules, stretching of the basal labyrinth, pycnotic nuclei, and desquamation of microvilli on the apical surface were revealed. In the epithelium of the distal tubules, partial swelling and destruction of mitochondria and pycnotic nuclei was observed, and nuclei were displaced towards the apical surface of cells. After 7 days of the exposure to POX, an increase in the thickness of the glomerular basement membrane (GBM) was observed in the LD50 and LD84 groups (p = 0.019 and 0.026, respectively). Moreover, signs of damage to tubular epithelial cells persisted with blockage of the tubule lumen by cellular detritus and local destruction of the surface of apical cells. Comparison of results from the three models demonstrates that the nephrotoxic effects of POX, evaluated at 1 and 3 days, appear regardless of prior inhibition of carboxylesterase activity.
Collapse
Affiliation(s)
- Vladislav E. Sobolev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia; (V.E.S.); (M.O.S.)
| | - Margarita O. Sokolova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia; (V.E.S.); (M.O.S.)
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia; (V.E.S.); (M.O.S.)
| |
Collapse
|
3
|
Zare Z, Zarbakhsh S, Mashhadban S, Moradgholi A, Mohammadi M. Apoptosis is involved in paraoxon-induced histological changes in rat cerebellum. Drug Chem Toxicol 2021; 45:2554-2560. [PMID: 34412520 DOI: 10.1080/01480545.2021.1966243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Acute toxicity of organophosphorus compounds is primarily caused by inhibition of acetylcholinesterase (AChE) at cholinergic synapses. The current study was designed to investigate the effects of paraoxon on histological changes as well as the role of mitochondrion-dependent apoptosis in causing this damage in the rat cerebellum. Adult male Wistar rats were intraperitoneally injected with paraoxon at 0.3, 0.7, or 1 mg/kg. Control animals were injected with corn oil as a vehicle. At 14 or 28 days after intoxication, histological changes and alterations in the expression of apoptosis-related proteins, including Bax, Bcl-2, and caspase-3, were investigated in the cerebellum using cresyl violet staining and western blotting, respectively. Findings showed the decreased thickness of both molecular and granular layers and reduction in the number of Purkinje cells in animals treated with a higher convulsive dose of paraoxon (1 mg/kg). In addition, exposure of rats to 1 mg/kg of paraoxon activated apoptosis pathway confirmed by an increase in Bax and caspase-3 and a decrease in Bcl-2 protein levels. According to our results, cerebellar histological changes and alterations in the expression of apoptosis-related proteins occur following exposure to a high convulsive dose of paraoxon and persist for a long time.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shamim Mashhadban
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Moradgholi
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Zare Z, Zarbakhsh S, Tehrani M, Mohammadi M. Paraoxon-induced damage in rat hippocampus is associated with alterations in the expression of apoptosis-related proteins. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104580. [PMID: 32448426 DOI: 10.1016/j.pestbp.2020.104580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/02/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
To determine the possible role of apoptosis in the development of paraoxon-induced brain damage, we evaluated expression of apoptosis-related proteins, the extent of neuronal damage, and activation of astrocytes in rat hippocampus. Adult male Wistar rats were intraperitoneally injected with one of three doses of paraoxon (0.3, 0.7, or 1 mg/kg) or corn oil (vehicle). After 14 or 28 days, expression of apoptosis-related proteins, including B-cell leukemia/lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), and caspase-3, as well as the number of neurons and glial fibrillary acidic protein (GFAP) positive cells in hippocampus were examined by western blot, cresyl blue staining, and immunohistochemistry, respectively. After 14 and 28 days, Bax and caspase-3 proteins were significantly increased in rats receiving 0.7 and 1 mg/kg of paraoxon. A significant decrease in Bcl-2 protein levels was also observed in 0.7 and 1 mg/kg groups after 14 days and in 1 mg/kg group after 28 days. Animals treated with 1 mg/kg of paraoxon showed a significant decrease in the number of neurons in the CA1 area. Also, those treated with 0.7 and 1 mg/kg of paraoxon showed an increase in the number of GFAP positive cells in both CA1 and CA3 areas as well as a significant decrease in survived neurons in the CA3 area. Our results indicated that neuronal damage induced by convulsive doses of paraoxon in rat hippocampus is mediated in part through apoptosis mechanism. Activation of astrocytes might lead to reduced extent of damage and damage and consequently increased neuronal survival.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Tehrani
- Department of Immunology, Gastrointestinal Cancer Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Iha HA, Kunisawa N, Shimizu S, Onishi M, Nomura Y, Matsubara N, Iwai C, Ogawa M, Hashimura M, Sato K, Kato M, Ohno Y. Mechanism Underlying Organophosphate Paraoxon-Induced Kinetic Tremor. Neurotox Res 2019; 35:575-583. [DOI: 10.1007/s12640-019-0007-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
|
6
|
Anxiolytic activity of paraoxon is associated with alterations in rat brain glutamatergic system. Neurotoxicol Teratol 2018; 71:32-40. [PMID: 30576762 DOI: 10.1016/j.ntt.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/18/2023]
Abstract
Exposure to organophosphate (OP) compounds leads to behavioral alterations. To determine whether paraoxon has effects on anxiety, anxiety-like behaviors were assessed in paraoxon-exposed rats. Protein expression of glutamate transporters has also been measured in hippocampus and prefrontal cortex. Three doses of paraoxon (0.3, 0.7, or 1 mg/kg) or corn oil (vehicle) were intraperitoneally injected to adult male rats. At 14 or 28 days after exposure, behavioral tests were done using elevated plus-maze (EPM) or open field tests. Thereafter, animals were sacrificed and both hippocampi and prefrontal cortices were extracted for cholinesterase assay and western blotting. Animals treated with convulsive doses of paraoxon (0.7 and 1 mg/kg) showed an increase in percentage of time spent in open arms and percentage of open arm entries in the EPM. In the open field test, an increase in the time spent in central area was observed in rats treated with the same doses of paraoxon. These effects of paraoxon were independent of any changes in locomotor activity. There was an increase in both astrocytic glutamate transporter proteins (GLAST and GLT-1) in the hippocampus of animals treated with 0.7 and 1 mg/kg of paraoxon. In the prefrontal cortex, protein levels of the GLAST and GLT-1 increased in 0.7 and decreased in 1 mg/kg groups. Only a significant decrease in EAAC1 protein was observed in the prefrontal cortex at 14 days following exposure to 1 mg/kg of paraoxon. Collectively, this study showed that exposure to convulsive doses of paraoxon induced anxiolytic-like behaviors in both behavioral tests. This effect may be attributed to alterations of glutamate transporter proteins in the rat hippocampus and prefrontal cortex.
Collapse
|
7
|
Sagiv SK, Harris MH, Gunier RB, Kogut KR, Harley KG, Deardorff J, Bradman A, Holland N, Eskenazi B. Prenatal Organophosphate Pesticide Exposure and Traits Related to Autism Spectrum Disorders in a Population Living in Proximity to Agriculture. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047012. [PMID: 29701446 PMCID: PMC6071837 DOI: 10.1289/ehp2580] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Prenatal exposure to organophosphate (OP) pesticides has been linked with poorer neurodevelopment and behaviors related to autism spectrum disorders (ASD) in previous studies, including in the Center for Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, a birth cohort living in the agricultural Salinas Valley in California. OBJECTIVES To investigate the association of prenatal exposure to OP pesticides with traits related to ASD, in childhood and adolescents in CHAMACOS. METHODS We assessed OP exposure during pregnancy with measurements of dialkyl phosphates (DAP) metabolites in urine, and residential proximity to OP use during pregnancy using California's Pesticide Use Reporting (PUR) data and estimated associations with ASD-related traits using linear regression models. We measured traits reported by parents and teachers as well as the child's performance on tests that evaluate the ability to use facial expressions to recognize the mental state of others at 7, 101/2, and 14 years of age. RESULTS Prenatal DAPs were associated with poorer parent and teacher reported social behavior [e.g., a 10-fold DAP increase was associated with a 2.7-point increase (95% confidence interval (CI): 0.9, 4.5) in parent-reported Social Responsiveness Scale, Version 2, T-scores at age 14]. We did not find clear evidence of associations between residential proximity to OP use during pregnancy and ASD-related traits. CONCLUSIONS These findings contribute mixed evidence linking OP pesticide exposures with traits related to developmental disorders like ASD. Subtle pesticide-related effects on ASD-related traits among a population with ubiquitous exposure could result in a rise in cases of clinically diagnosed disorders like ASD. https://doi.org/10.1289/EHP2580.
Collapse
Affiliation(s)
- Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Maria H Harris
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Robert B Gunier
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Katherine R Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
8
|
Farizatto KLG, Bahr BA. Paraoxon: An Anticholinesterase That Triggers an Excitotoxic Cascade of Oxidative Stress, Adhesion Responses, and Synaptic Compromise. ACTA ACUST UNITED AC 2017; 13:29-37. [PMID: 29805717 DOI: 10.19044/esj.2017.c1p4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The anticholinesterase paraoxon (Pxn) is an organophosphate (OP) and the active metabolite of the insecticide parathion. It potently inhibits the enzyme acetylcholinesterase and leads to enhanced glutamate release, diminished GABA uptake, oxidative damage, and neurodegeneration. The resulting increased levels of acetylcholine can trigger seizures and cause neuronal and excitotoxic damage in the brain. The brain susceptibility related to anticholinesterase toxins extends beyond potential brain damage and death from toxic levels of the agent. Asymptomatic low-level exposure to such toxins can also leave the brain vulnerable or even cause it to exhibit neurological problems later in life. The actions of Pxn and similar neurotoxins have been studied in order to examine the events associated with anticholinesterase toxicity in the brain. A recent study demonstrated that Pxn exposure initiates a pathogenic cascade involving seizure events and subsequent signs of damage including unique presynaptic vulnerability and associated behavioral deficits. In addition, Pxn-mediated synaptotoxicity is also associated with enhanced production of oxidative stress as well as integrin adhesion responses. These findings provide a better understanding of the molecular events involved in Pxn toxicity.
Collapse
Affiliation(s)
- Karen L G Farizatto
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| |
Collapse
|
9
|
Farizatto KLG, McEwan SA, Naidoo V, Nikas SP, Shukla VG, Almeida MF, Byrd A, Romine H, Karanian DA, Makriyannis A, Bahr BA. Inhibitor of Endocannabinoid Deactivation Protects Against In Vitro and In Vivo Neurotoxic Effects of Paraoxon. J Mol Neurosci 2017; 63:115-122. [PMID: 28803438 DOI: 10.1007/s12031-017-0963-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
The anticholinesterase paraoxon (Pxn) is related to military nerve agents that increase acetylcholine levels, trigger seizures, and cause excitotoxic damage in the brain. In rat hippocampal slice cultures, high-dose Pxn was applied resulting in a presynaptic vulnerability evidenced by a 64% reduction in synapsin IIb (syn IIb) levels, whereas the postsynaptic protein GluR1 was unchanged. Other signs of Pxn-induced cytotoxicity include the oxidative stress-related production of stable 4-hydroxynonenal (4-HNE)-protein adducts. Next, the Pxn toxicity was tested for protective effects by the fatty acid amide hydrolase (FAAH) inhibitor AM5206, a compound linked to enhanced repair signaling through the endocannabinoid pathway. The Pxn-mediated declines in syn IIb and synaptophysin were prevented by AM5206 in the slice cultures. To test if the protective results in the slice model translate to an in vivo model, AM5206 was injected i.p. into rats, followed immediately by subcutaneous Pxn administration. The toxin caused a pathogenic cascade initiated by seizure events, leading to presynaptic marker decline and oxidative changes in the hippocampus and frontal cortex. AM5206 exhibited protective effects including the reduction of seizure severity by 86%, and improving balance and coordination measured 24 h post-insult. As observed in hippocampal slices, the FAAH inhibitor also prevented the Pxn-induced loss of syn IIb in vivo. In addition, the AM5206 compound reduced the 4-HNE modifications of proteins and the β1 integrin activation events both in vitro and in vivo. These results indicate that Pxn exposure produces oxidative and synaptic toxicity that leads to the behavioral deficits manifested by the neurotoxin. In contrast, the presence of FAAH inhibitor AM5206 offsets the pathogenic cascade elicited by the Pxn anticholinesterase.
Collapse
Affiliation(s)
- Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA
| | - Sara A McEwan
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA.,Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Vinogran Naidoo
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA.,Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Spyros P Nikas
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | | | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA
| | - Aaron Byrd
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA
| | - Heather Romine
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA
| | - David A Karanian
- Neurosciences Program, University of Connecticut, Storrs, CT, USA
| | | | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA. .,Neurosciences Program, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
10
|
Differential expression of glutamate transporters in cerebral cortex of paraoxon-treated rats. Neurotoxicol Teratol 2017; 62:20-26. [PMID: 28603072 DOI: 10.1016/j.ntt.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/12/2017] [Accepted: 06/07/2017] [Indexed: 01/05/2023]
Abstract
Glutamatergic system is involved in pathological effects of organophosphorus (OP) compounds. We aimed to determine in vivo effects of paraoxon, the bioactive metabolite of parathion, on the expression of glutamate transporters as well as Bax and Bcl2 in rat cerebral cortex. Male Wistar rats received an intraperitoneal (i.p.) injection of one of three doses of paraoxon (0.3, 0.7, or 1mg/kg) or corn oil as vehicle (1ml/kg). After 4 or 18h, cerebral cortices were dissected out and used for quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot assays to measure mRNA and protein levels, respectively. The cortical glial glutamate transporters (GLAST and GLT-1) were up-regulated in animals treated with 0.7mg/kg of paraoxon, but down-regulated in 1mg/kg group. Neuronal glutamate transporter (EAAC1) was unchanged in 0.7mg/kg treated rats, while reduced in 1mg/kg group. No significant difference was found in the mRNA and protein expression of EAAC1 in animals intoxicated with 0.3mg/kg of paraoxon. Paraoxon (1mg/kg) resulted in an up-regulation of Bax and down-regulation of Bcl2 mRNA levels in the rat cerebral cortex. These results indicate that paraoxon can differentially regulate expression of glutamate transporters at mRNA and protein levels in the cerebral cortex. Changes in the expression of glutamate transporters are closely related to paraoxon-induced seizure activity.
Collapse
|
11
|
Mohammadi M. Comments on Quaak, et al. The Dynamics of Autism Spectrum Disorders: How Neurotoxic Compounds and Neurotransmitters Interact. Int. J. Environ. Res. Public Health 2013, 10, 3384-3408. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13121207. [PMID: 27918486 PMCID: PMC5201348 DOI: 10.3390/ijerph13121207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/16/2022]
Abstract
I have read the article entitled "The dynamics of autism spectrum disorders: how neurotoxic compounds and neurotransmitters interact". There are some errors in the interpretation of results obtained from our previous studies that should be explained.
Collapse
Affiliation(s)
- Moslem Mohammadi
- Molecular and Cell Biology Research Center, Department of Physiology and Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48471-91971, Iran.
| |
Collapse
|
12
|
Mohammadi M, Zare Z, Allah-Moradi E, Vaezi N, Valadan R, Tehrani M. Alterations in mRNA and protein expression of glutamate transporters in rat hippocampus after paraoxon exposure. Neurotoxicology 2016; 57:251-257. [PMID: 27769869 DOI: 10.1016/j.neuro.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/15/2016] [Accepted: 10/15/2016] [Indexed: 01/30/2023]
Abstract
Organophosphates affect brain function through a variety of mechanisms beyond their shared role as cholinesterase inhibitors. The aim of the current study was to investigate the changes in the expression of glial (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters at mRNA and protein levels in paraoxon-treated rat hippocampus. Adult male Wistar rats were intraperitoneally treated with either vehicle (corn oil) or one of three dosages of paraoxon (0.3, 0.7 or 1mg/kg). After 4 or 18h, both hippocampi of each rat were collected to detect mRNA and protein expression of glutamate transporters using the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting, respectively. Animals treated with 0.3mg/kg paraoxon showed no difference in mRNA and protein levels of the glutamate transporters when compared with control group. At 4h after exposure with 0.7 and 1mg/kg paraoxon, the expression of GLAST and GLT-1 increased at mRNA and protein levels and remained elevated after 18h. No difference in the expression of EAAC1 at mRNA and protein levels was observed in any paraoxon-treated groups compared with the control group. This study showed an increased expression of glial (GLAST and GLT-1), but not neuronal (EAAC1) glutamate transporters, in adult rat hippocampus following administration of convulsive dosages of paraoxon. These suggest a protective and compensatory adaptation for effective uptake of glutamate in hippocampus induced by paraoxon and thus attenuating seizure activity.
Collapse
Affiliation(s)
- Moslem Mohammadi
- Department of Physiology & Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Zare
- Department of Anatomical Sciences, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Esmaeil Allah-Moradi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narges Vaezi
- Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
The dynamics of autism spectrum disorders: how neurotoxic compounds and neurotransmitters interact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3384-408. [PMID: 23924882 PMCID: PMC3774444 DOI: 10.3390/ijerph10083384] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022]
Abstract
In recent years concern has risen about the increasing prevalence of Autism Spectrum Disorders (ASD). Accumulating evidence shows that exposure to neurotoxic compounds is related to ASD. Neurotransmitters might play a key role, as research has indicated a connection between neurotoxic compounds, neurotransmitters and ASD. In the current review a literature overview with respect to neurotoxic exposure and the effects on neurotransmitter systems is presented. The aim was to identify mechanisms and related factors which together might result in ASD. The literature reported in the current review supports the hypothesis that exposure to neurotoxic compounds can lead to alterations in the GABAergic, glutamatergic, serotonergic and dopaminergic system which have been related to ASD in previous work. However, in several studies findings were reported that are not supportive of this hypothesis. Other factors also might be related, possibly altering the mechanisms at work, such as time and length of exposure as well as dose of the compound. Future research should focus on identifying the pathway through which these factors interact with exposure to neurotoxic compounds making use of human studies.
Collapse
|
14
|
Jafari M, Salehi M, Asgari A, Ahmadi S, Abbasnezhad M, Hajihoosani R, Hajigholamali M. Effects of paraoxon on serum biochemical parameters and oxidative stress induction in various tissues of Wistar and Norway rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:876-887. [PMID: 23021855 DOI: 10.1016/j.etap.2012.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 08/14/2012] [Accepted: 08/24/2012] [Indexed: 06/01/2023]
Abstract
This study investigates the effects of different doses of paroxon (POX), an active metabolite of the organophosphate pesticide parathion, on some serum biochemical parameters and induction of oxidative stress in various tissues of female Wistar and Norway rats. The rats were intraperitoneally treated with 0.3, 0.7, 1 and 1.5 mg/kg of POX. The parameters were evaluated after 24h. The results showed that the decreased glutathione level and catalase, glutathione-S-transferase and lactate dehydrogenase activities in tissues of Wistar rat were higher than Norway rat at higher doses of POX. At these concentrations, POX increased superoxide dismutase activity, malondialdehyde level and some serum biochemical indices. In conclusion, POX induces the production of free radicals and oxidative stress in a dose-dependent manner. Induction of oxidative stress in POX-treated rats is in the order of brain > liver > heart > kidney>spleen. Wistar rat is found to be more sensitive to the toxicity of POX compared to Norway rat.
Collapse
Affiliation(s)
- Mahvash Jafari
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
15
|
Gubert P, Ávila DS, Bridi JC, Saurin S, Lugokenski TH, Villarinho JG, Fachinetto R, Pereira ME, Ferreira J, da Rocha JBT, Soares FAA. Low concentrations of methamidophos do not alter AChE activity but modulate neurotransmitters uptake in hippocampus and striatum in vitro. Life Sci 2011; 88:89-95. [DOI: 10.1016/j.lfs.2010.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/25/2010] [Accepted: 10/26/2010] [Indexed: 11/24/2022]
|
16
|
In vitro assessment of paraoxon effects on GABA uptake in rat hippocampal synaptosomes. Toxicol In Vitro 2009; 23:868-73. [PMID: 19460429 DOI: 10.1016/j.tiv.2009.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/20/2009] [Accepted: 05/10/2009] [Indexed: 11/22/2022]
Abstract
Treating organophosphate poisoning is achieved mainly using compounds with anticholinergic characteristics. Nevertheless currently the focus of attention is aimed at examining their interference with other neurotransmitter systems. The present investigation studied the potential interactions between paraoxon and GABA uptake in hippocampal synaptosomes. Wistar rats weighing 200-250 g were used. Hippocampal synaptosomes were prepared and incubated with [(3)H] GABA in the presence of different doses of paraoxon for 10 min at 37 degrees C; and were then layered in chambers of a superfusion system and the [(3)H] GABA uptake was measured. Our finding revealed that mean GABA uptake decreased by 21%, 42%, 37%, 20%, and 8% of the corresponding control values in the presence of paraoxon concentrations of 0.01, 0.1, 1, 10, and 100 microM, respectively which was significant at 0.1 and 1 microM of paraoxon (P<0.05). In conclusion, micromolar concentrations of paraoxon were shown to interfere with GABA uptake in hippocampal synaptosomes, which indicates the GABA transporters may play a role in organophosphate-induced convulsions.
Collapse
|