1
|
Feng Y, Shi J, Li M, Duan H, Shao B. Evaluation of the cytotoxic activity of triphenyl phosphate on mouse spermatocytes cells. Toxicol In Vitro 2023; 90:105607. [PMID: 37149271 DOI: 10.1016/j.tiv.2023.105607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Triphenyl phosphate (TPhP) is one of the most commonly found organophosphorus flame retardants (OPFRs) in the environment and the general population. Continuous daily exposure to TPhP may adversely impact male reproductive health. However, few researches were conducted to investigate the direct effects of TPhP on the progress of sperm growth and development. In this study, mouse spermatocyte GC-2spd (GC-2) cells were selected as an in vitro model, the impact of oxidative stress, mitochondrial impairment, DNA damage, cell apoptosis and the related molecular mechanisms were investigated using high content screening (HCS) system. Our study indicated that cell viability was decreased significantly in a dose-dependent manner after TPhP treatment with the half lethal concentration (LC50) at 105.8, 61.61 and 53.23 μM for 24, 48 and 72 h. A concentration-related apoptosis occurrence was observed in GC-2 cells after TPhP exposure for 48 h. In addition, the elevated intracellular reactive oxygen species (ROS) and the total antioxidant capacity (T-AOC) also observed after exposing to 6, 30 and 60 μM of TPhP. Furthermore, based on the enhancement of pH2AX protein and alteration of nuclear morphology or DNA content, DNA damage might be induced by higher concentration of TPhP treatment. Simultaneously, alteration of mitochondrial structure, enhancement of mitochondrial membrane potential (MMP), reduction of cellular adenosine triphosphate (ATP) content, altered expression of Bcl-2 family proteins, release of cytochrome c and increase of caspase-3 and caspase-9 activity demonstrated that caspase-3 dependent mitochondrial pathway might play a key role in the process of GC-2 cell apoptosis. Taken together, these results showed that TPhP was a mitochondrial toxicant and apoptotic inducer, which might trigger alike responses in human spermatogenic cells. Therefore, the potential reproductive toxicity of TPhP should not be ignored.
Collapse
Affiliation(s)
- Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Jiachen Shi
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Ming Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Hejun Duan
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China.
| |
Collapse
|
2
|
Guo L, Li C, Coupland G, Liang P, Chu D. Up-regulation of calmodulin involved in the stress response to cyantraniliprole in the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). INSECT SCIENCE 2021; 28:1745-1755. [PMID: 33200870 DOI: 10.1111/1744-7917.12887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Cyantraniliprole is the first diamide insecticide to have cross-spectrum activity against a broad range of insect orders. The insecticide, like other diamides, selectively acts on ryanodine receptor, destroys Ca2+ homeostasis, and ultimately causes insect death. Although expression regulations of genes associated with calcium signaling pathways are known to be involved in the response to diamides, little is known regarding the function of calmodulin (CaM), a typical Ca2+ sensor central in regulating Ca2+ homeostasis, in the stress response of insects to the insecticide. In this study, we cloned and identified the full-length complementary DNA of CaM in the whitefly, Bemisia tabaci (Gennadius), named BtCaM. Quantitative real-time reverse transcription polymerase chain reaction-based analyses showed that the messenger RNA level of BtCaM was rapidly induced from 1.51- to 2.43-fold by cyantraniliprole during 24 h. Knockdown of BtCaM by RNA interference increased the toxicity of cyantraniliprole in whiteflies by 42.85%. In contrast, BtCaM expression in Sf9 cells significantly increased the cells' tolerance to cyantraniliprole as much as 2.91-fold. In addition, the expression of BtCaM in Sf9 cells suppressed the rapid increase of intracellular Ca2+ after exposure to cyantraniliprole, and the maximum amplitude in the Sf9-BtCaM cells was only 34.9% of that in control cells (Sf9-PIZ/V5). These results demonstrate that overexpression of BtCaM is involved in the stress response of B. tabaci to cyantraniliprole through regulation of Ca2+ concentration. As CaM is one of the most evolutionarily conserved Ca2+ sensors in insects, outcomes of this study may provide the first details of a universal insect response to diamide insecticides.
Collapse
Affiliation(s)
- Lei Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shangdong, 266109, China
| | - Changyou Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shangdong, 266109, China
| | - Grey Coupland
- Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Pei Liang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shangdong, 266109, China
| |
Collapse
|
3
|
Seong JB, Bae YC, Lee HS, Huh JW, Lee SR, Lee HJ, Lee DS. Increasing ERK phosphorylation by inhibition of p38 activity protects against cadmium-induced apoptotic cell death through ERK/Drp1/p38 signaling axis in spermatocyte-derived GC-2spd cells. Toxicol Appl Pharmacol 2019; 384:114797. [PMID: 31676320 DOI: 10.1016/j.taap.2019.114797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 01/30/2023]
Abstract
Many studies report that cadmium chloride (CdCl2)-induces oxidative stress is associated with male reproductive damage in the testes. CdCl2 also induces mitochondrial fission by increasing dynamin-related protein 1 (Drp1) expression as well as the mitochondria-dependent apoptosis pathway by extracellular signal-regulated kinase (ERK) activation. However, it remains unclear whether mechanisms linked to the mitochondrial damage signal via CdCl2-induced mitogen-activated protein kinases (MAPK) cause damage to spermatocytes. In this study, increased intracellular and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (∆Ψm) depolarization, and mitochondrial fragmentation and swelling were observed at 5 μM of CdCl2 exposure, resulting in increased apoptotic cell death. Moreover, CdCl2-induced cell death is closely associated with the ERK/Drp1/p38 signaling axis. Interestingly, SB203580, a p38 inhibitor, effectively prevented CdCl2-induced apoptotic cell death by reducing ∆Ψm depolarization and intracellular and mitochondrial ROS levels. Knockdown of Drp1 expression diminished CdCl2-induced mitochondrial deformation and ROS generation and protected GC-2spd cells from apoptotic cell death. In addition, electron microscopy showed that p38 inhibition reduced CdCl2-induced mitochondrial interior damage more effectively than N-acetyl-L-cysteine (NAC), an ROS scavenger; ERK inhibition; or Drp1 knockdown. Therefore, these results demonstrate that inhibition of p38 activity prevents CdCl2-induced apoptotic GC-2spd cell death by reducing depolarization of mitochondrial membrane potential and mitochondrial ROS levels via ERK phosphorylation in a signal pathway different from the CdCl2-induced ERK/Drp1/p38 axis and suggest a therapeutic strategy for CdCl2-induced male infertility.
Collapse
Affiliation(s)
- Jung Bae Seong
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hong Jun Lee
- College of Medicine, Chungbuk National University, Chungbuk, Republic of Korea; Department of Radiology, Chungbuk National University Hospital, Chungbuk, Republic of Korea; Research Institute, e-biogen Inc., Seoul, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Ye X, Liu J. Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:590-599. [PMID: 30476888 DOI: 10.1016/j.envpol.2018.11.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Pyrethroids, a class of ubiquitous insecticides, have been recognized as endocrine-disrupting chemicals (EDCs). A lot of studies have implied the endocrine-disrupting effects of pyrethroids on the hypothalamic-pituitary-gonadal (HPG) axis. However, there are few review articles regarding the effects of pyrethroids on the HPG axis of mammal and human, especially new research progress made in this area. The present review sums up the effects of pyrethroids on the HPG axis-related reproductive outcomes, including epidemiological investigations based on human biomonitoring, animal studies and in vitro tests. Mechanisms have described that the endocrine-disrupting effects of pyrethroids on mammal can be mediated via the interaction with steroid receptors, the direct action on ion channels and signaling molecules. Finally, we summarize the current research gaps and suggest future directions in this topic.
Collapse
Affiliation(s)
- Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Qiu LL, Wang C, Yao S, Li N, Hu Y, Yu Y, Xia R, Zhu J, Ji M, Zhang Z, Wang SL. Fenvalerate induces oxidative hepatic lesions through an overload of intracellular calcium triggered by the ERK/IKK/NF-κB pathway. FASEB J 2018; 33:2782-2795. [PMID: 30307764 DOI: 10.1096/fj.201801289r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fenvalerate (FEN), a mainstream pyrethroid pesticide, was initially recommended as a low-toxicity agent for controlling agricultural and domestic pests. Despite the widespread use of FEN worldwide, little data are available on FEN-induced hepatic lesions and molecular mechanisms. In the present study, we first performed an occupational cross-sectional study on FEN factory workers and found that the levels of serum alanine aminotransferase (ALT) and total antioxidant capacity increased, whereas malondialdehyde decreased in laborers in the working areas where the levels of airborne FEN were much higher compared with the office area. The results were then confirmed by animal experiments that abnormal hepatic histology, increased ALT level, and compromised hepatic oxidative capability were observed in rats exposed to a high concentration of FEN. Furthermore, the bioinformatics analysis of gene microarray in rat liver tissue showed that FEN significantly changed the expressions of genes related to the regulation of intracellular calcium ion homeostasis and the calcium signal pathway. Finally, the functional experiments in Buffalo rat liver (BRL) cells demonstrated that FEN first activated ERK MAPK, followed by IKK and NF-κB, which triggered the transcription of genes responsible for accelerating an overload of intracellular calcium ions, prompted reactive oxygen species generation in the mitochondria, and finally, induced hepatic cellular apoptosis. The calcium signaling pathway and in particular, an overload of intracellular calcium play a critical role in this pathophysiological process via the ERK/IKK/NF-κB pathway. Our study furthers the understanding of the mechanism of FEN-induced hepatic injuries and may have implications in the prevention and control of liver diseases induced by environmental pesticides.-Qiu, L.-L., Wang, C., Yao, S., Li, N., Hu, Y., Yu, Y., Xia, R., Zhu, J., Ji, M., Zhang, Z., Wang S.-L. Fenvalerate induces oxidative hepatic lesions through an overload of intracellular calcium triggered by the ERK/IKK/NF-κB pathway.
Collapse
Affiliation(s)
- Liang-Lin Qiu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Public Health, Nantong University, Nantong, China
| | - Chao Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Shen Yao
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Li
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuhuan Hu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yongquan Yu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Rong Xia
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiansheng Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Minghui Ji
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhan Zhang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Shou-Lin Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Guo Y, Shen O, Han J, Duan H, Yang S, Zhu Z, Tong J, Zhang J. Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1314-1320. [PMID: 29040059 DOI: 10.1080/15287394.2017.1384148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fenvalerate (Fen), a widely used pesticide, is known to impair male reproductive functions by mechanisms that remain to be elucidated. Recent studies indicated that circadian clock genes may play an important role in successful male reproduction. The aim of this study was to determine the effects of Fen on circadian clock genes involved in the biosynthesis of testosterone using TM3 cells derived from mouse Leydig cells. Data demonstrated that the circadian rhythm of testosterone synthesis in TM3 cells was disturbed following Fen treatment as evidenced by changes in the circadian rhythmicity of core clock genes (Bmal1, Rev-erbα, Rorα). Further, the observed altered rhythms were accompanied by increased intracellular Ca2+ levels and modified steroidogenic acute regulatory (StAR) mRNA expression. Thus, data suggested that Fen inhibits testosterone synthesis via pathways involving intracellular Ca2+ and clock genes (Bmal1, Rev-Erbα, Rorα) as well as StAR mRNA expression in TM3 cells.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Animals
- Cell Line
- Circadian Rhythm/genetics
- Circadian Rhythm Signaling Peptides and Proteins/genetics
- Circadian Rhythm Signaling Peptides and Proteins/metabolism
- Insecticides/toxicity
- Leydig Cells/drug effects
- Leydig Cells/metabolism
- Male
- Mice
- Nitriles/toxicity
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Pyrethrins/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Testosterone/metabolism
Collapse
Affiliation(s)
- Yichen Guo
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Ouxi Shen
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
- b Department of Occupational Health , Suzhou Industrial Park Center for Disease Control and Prevention , Suzhou , China
| | - Jingjing Han
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Hongyu Duan
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Siyuan Yang
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Zhenghong Zhu
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Jian Tong
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Jie Zhang
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| |
Collapse
|
7
|
Yin L, Dai Y, Cui Z, Jiang X, Liu W, Han F, Lin A, Cao J, Liu J. The regulation of cellular apoptosis by the ROS-triggered PERK/EIF2α/chop pathway plays a vital role in bisphenol A-induced male reproductive toxicity. Toxicol Appl Pharmacol 2017; 314:98-108. [DOI: 10.1016/j.taap.2016.11.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
8
|
Zhang G, Liu K, Ling X, Wang Z, Zou P, Wang X, Gao J, Yin L, Zhang X, Liu J, Ao L, Cao J. DBP-induced endoplasmic reticulum stress in male germ cells causes autophagy, which has a cytoprotective role against apoptosis in vitro and in vivo. Toxicol Lett 2016; 245:86-98. [PMID: 26804720 DOI: 10.1016/j.toxlet.2016.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/28/2023]
Abstract
Recently, spermatogenic cell apoptosis was shown to play a key role in the induction of testicular atrophy by dibutyl phthalate (DBP), thus causing reproductive toxicology. However, the molecular events induced by DBP in apoptotic germ cells remain unclear. In the present study, the mouse spermatocyte-derived GC-2 cell line was exposed to different doses of DBP. We found that DBP induced marked apoptosis in GC-2 cells. The levels of the major endoplasmic reticulum (ER) stress markers GRP-78, ATF-6, and p-EIF2α were elevated when GC-2 cells were exposed to 25 μM DBP and increased in a dose-dependent manner at higher concentrations. Furthermore, at a concentration that resulted in significant apoptosis (100 μM), CHOP, which plays a convergent role in ER stress-mediated apoptosis and is regulated by various upstream ER stress signals, was activated and partially contributed to the DBP-induced apoptosis. However, inhibition of ER stress by 4-PBA, a chemical with chaperone-like activities, augmented the GC-2 cell apoptosis induced by DBP. Further experiments demonstrated that DBP-induced ER stress additionally had a protective role, mediated through the activation of autophagy. These results were confirmed in prepubertal rat testis germ cells; DBP treatment significantly induced testicular atrophy, accompanied by apoptosis, ER stress, and autophagy. Inhibition of ER stress and autophagy significantly aggravated the DBP-induced damage to the germ cells and testes. Taken together, our data suggest that DBP-induced ER stress in germ cells has a cytoprotective effect that is mediated through autophagy activation. These findings provide novel clues regarding the molecular events involved in DBP-induced germ cell apoptosis.
Collapse
Affiliation(s)
- Guowei Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Kaijun Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Xi Ling
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Zhi Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Peng Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Xiaogang Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jianfang Gao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
9
|
Qian W, Wang Y, Zhu J, Mao C, Wang Q, Huan F, Cheng J, Liu Y, Wang J, Xiao H. The toxic effects of Bisphenol A on the mouse spermatocyte GC-2 cell line: the role of the Ca2+-calmodulin-Ca2+/calmodulin-dependent protein kinase II axis. J Appl Toxicol 2015; 35:1271-7. [DOI: 10.1002/jat.3188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Wenyi Qian
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing 211199 China
| | - Yixin Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing 211199 China
| | - Jingying Zhu
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing 211199 China
| | - Changfei Mao
- Department of Oncology, Affiliated Jiangsu Cancer Hospital; Nanjing Medical University; Nanjing 210009 China
| | - Qiang Wang
- Department of Preventive Medicine, School of Medical Science and Laboratory Medicine; Jiangsu University; Zhenjiang 212013 China
| | - Fei Huan
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing 211199 China
| | - Jie Cheng
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing 211199 China
| | - Yanqing Liu
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing 211199 China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing 211199 China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing 211199 China
| |
Collapse
|
10
|
Involvement of CaM-CaMKII-ERK in bisphenol A-induced Sertoli cell apoptosis. Toxicology 2014; 324:27-34. [DOI: 10.1016/j.tox.2014.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 11/17/2022]
|
11
|
Gao X, Wang Q, Wang J, Wang C, Lu L, Gao R, Huan F, Dixon D, Xiao H. Expression of calmodulin in germ cells is associated with fenvalerate-induced male reproductive toxicity. Arch Toxicol 2012; 86:1443-51. [PMID: 22437841 DOI: 10.1007/s00204-012-0825-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 02/27/2012] [Indexed: 01/31/2023]
Abstract
Exposure to fenvalerate was demonstrated to be toxic to the male reproductive system. Our previous data revealed that intracellular calcium plays an important role in regulating the above toxicity, through actions on both T-type calcium channels and endoplasmic reticulum calcium signals. The present study explored the effects of fenvalerate on the expression of calmodulin in mouse testis and GC-2spd(ts) cells, and its association with fenvalerate-induced male reproductive toxicity. Male mice were subjected to different doses (3.71, 18.56, 37.12, 92.81 mg/kg bw) of fenvalerate or vehicle control for 4 weeks. Expression of calmodulin was determined by real-time polymerase chain reaction (PCR) and Western blot analysis in mouse testis. Similar approaches were utilized in GC-2spd(ts) cells cultured with 5 μM fenvalerate at different time points. In the in vivo study, all mice survived through the entire 4 weeks. Administration of fenvalerate resulted in a dose-dependent reduction in testis weight/body weight, sperm motility, and increased head abnormality rate. By histological staining, mice treated with fenvalerate at higher doses showed dilated seminiferous tubules and disturbed arrangement of spermatogenic cells. Meanwhile, both mRNA and protein expression of calmodulin were significantly increased in the testes of mice exposed to fenvalerate compared to control mice. Moreover, in the in vitro study, 5 μM fenvalerate significantly increased the expression of calmodulin at the mRNA and protein levels in GC-2spd(ts) cells after 8 h of incubation and sustained these levels for at least 24 h. Collectively, these data suggested that enhanced expression of calmodulin correlates with male reproductive damage induced by fenvalerate.
Collapse
Affiliation(s)
- Xiaohua Gao
- Department of Toxicology and Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dutta R, Das N. Immunomodulation of serum complement (C3) and macrophages by synthetic pyrethroid fenvalerate: in vitro study. Toxicology 2011; 285:126-32. [PMID: 21557984 DOI: 10.1016/j.tox.2011.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/17/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Fenvalerate, a type II synthetic pyrethroid, has emerged as one of the most potent indoor toxicants. Despite its widespread usage, the adverse effect of this insecticide on immune defense mechanism has not been comprehensively investigated. In this in vitro study we report the effect of fenvalerate on two pivotal components of the immune network, namely the complement system and macrophages. Fenvalerate treated human sera showed serum complement activation as evident by significant (p<0.05) increase in C3b, C3d and C3a levels and a significant (p<0.05) decline in CH50 levels. Further detailed study demonstrates that the activation of complement system is through alternative pathway. This is possibly responsible for various allergic manifestations often reported in subjects exposed to fenvalerate. In addition, fenvalerate induce cellular apoptosis and cytotoxicity, as demonstrated by cytoplasmic vacuolization, heterochromatin condensation, hypodiploid nuclei and DNA fragmentation in macrophages. Considerable deleterious effects on macrophages in conjunction with uncontrolled serum complement activation are probably one of the major mechanisms contributing for the immunosuppressive effects of fenvalerate.
Collapse
Affiliation(s)
- Raini Dutta
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India.
| | | |
Collapse
|
13
|
Gammon DW, Leggett MF, Clark JM. Pyrethroid mode(s) of action in the context of Food Quality Protection Act (FQPA) regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2773-2785. [PMID: 21388186 DOI: 10.1021/jf103901k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A Scientific Advisory Panel (SAP) in June 2009 concluded that a common mode of action existed for pyrethroids, with two subgroups. The purpose of this SAP was to advise the U.S. Environmental Protection Agency on the validity of regulation of pyrethroids as a single class under the Food Quality Protection Act of 1996. Two types of pyrethroid action were first described for clinical signs in the rat and clinical signs/nerve effects in the cockroach. In insects, Type I clinical signs correlate with repetitive firing in nerve axons, especially fine sensory axons. The Na(+) inward current is via a TTX-sensitive voltage-gated sodium channel (VGSC). Type II (α-CN) effects on VGSCs do not include repetitive firing following stimulation in these axons. Instead, Type II effects on VGSCs include prolonged Na(+) tail currents along with depolarization of nerve membrane. Other Type II effects have been measured on VG Ca(2+) and K(+) channels and VG and GABA-activated Cl(-) channels. In conclusion, in vivo pyrethroid effects in mammals should be linked with specific channel effects, allowing the use of specific clinical signs or ion channel effects for pyrethroid risk assessment.
Collapse
|