1
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Stykel MG, Ryan SD. Network analysis of S-nitrosylated synaptic proteins demonstrates unique roles in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119720. [PMID: 38582237 DOI: 10.1016/j.bbamcr.2024.119720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Nitric oxide can covalently modify cysteine thiols on target proteins to alter that protein's function in a process called S-nitrosylation (SNO). S-nitrosylation of synaptic proteins plays an integral part in neurotransmission. Here we review the function of the SNO-proteome at the synapse and whether clusters of SNO-modification may predict synaptic dysfunction associated with disease. We used a systematic search strategy to concatenate SNO-proteomic datasets from normal human or murine brain samples. Identified SNO-modified proteins were then filtered against proteins reported in the Synaptome Database, which provides a detailed and experimentally verified annotation of all known synaptic proteins. Subsequently, we performed an unbiased network analysis of all known SNO-synaptic proteins to identify clusters of SNO proteins commonly involved in biological processes or with known disease associations. The resulting SNO networks were significantly enriched in biological processes related to metabolism, whereas significant gene-disease associations were related to Schizophrenia, Alzheimer's, Parkinson's and Huntington's disease. Guided by an unbiased network analysis, the current review presents a thorough discussion of how clustered changes to the SNO-proteome influence health and disease.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada; Hotchkiss Brain Institute, Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
The level of the zinc homeostasis regulating proteins in the brain of rats subjected to olfactory bulbectomy model of depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:36-48. [PMID: 27565434 DOI: 10.1016/j.pnpbp.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Zinc transporters (ZnTs) and metallothioneins (MT) are important in maintaining Zn homeostasis in the brain. The present study was designed to find out whether alterations in ZnTs and MTs are associated with the pathophysiology of depression and the mechanism of antidepressant action. METHODS Messenger RNA and proteins of ZnT1, ZnT3, ZnT4, ZnT5, ZnT6 and MT1/2 were measured in the prefrontal cortex (PFC) and hippocampus (Hp) of rats subjected to olfactory bulbectomy (OB) (a model of depression) and chronic amitriptyline (AMI) treatment by Real Time PCR and Western Blot/Immunohistochemistry (IHP). RESULTS Results in the OB rats showed: increases in the protein levels of ZnT1 in the PFC and Hp and MT1/2 in the PFC; a decrease in ZnT3 protein level in the PFC; no changes in ZnT4, ZnT5 and ZnT6 in the PFC and Hp. IHP labeling revealed increases in the optical densities of ZnT1-IR in the PFC and Hp and decreases in ZnT3 and ZnT4-IR in the PFC of OB rats. Although OB had no effects on gene expression of ZnTs, mRNAs for MT1/2 were increased. Chronic AMI treatment did not influence protein levels of ZnTs and MT1/2 in Sham and OB rats; however decreased mRNA levels of ZnT4 and ZnT5 in PFC and ZnT1, ZnT3, ZnT4 and ZnT6 in Hp of Sham rats and normalized OB induced increase in MT1/2 gene expression. CONCLUSIONS Changes in ZnTs and MT1/2 suggest altered cortical distribution of Zn in the OB model which further supports the hypothesis that Zn dyshomeostasis may be involved in the pathophysiology of depression.
Collapse
|
4
|
Yuan H, Zhang Q, Guo J, Zhang T, Zhao J, Li J, White A, Carmichael PL, Westmoreland C, Peng S. A PGC-1α-Mediated Transcriptional Network Maintains Mitochondrial Redox and Bioenergetic Homeostasis against Doxorubicin-Induced Toxicity in Human Cardiomyocytes: Implementation of TT21C. Toxicol Sci 2016; 150:400-17. [PMID: 26781513 DOI: 10.1093/toxsci/kfw006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chemical toxicity testing is fast moving in a direction that relies increasingly on cell-basedin vitroassays anchored on toxicity pathways according to the toxicity testing in the 21st century vision. Identifying points of departure (POD) via these assays and revealing their mechanistic underpinnings via computational modeling of the relevant pathways are critical and challenging steps. Here we used doxorubicin (DOX) as a prototype chemical to study mitochondrial toxicity in human AC16 cells. Mitochondrial toxicity has been linked to cardiovascular risk of DOX, which has limited its clinical use as an antitumor drug. Ourin vitrostudy revealed a well-defined POD concentration of DOX below which adaptive induction of proliferator-activated receptor-γ coactivator-1α (PGC-1α) -mediated mitochondrial genes, including NRF-1, MnSOD, UCP2, and COX1, concurred with negligible changes in mitochondrial superoxide and cytotoxicity. At higher DOX concentrations adversity became significant with elevated superoxide and suppressed ATP levels. A computational model was formulated to simulate the PGC-1α-mediated transcriptional network comprising multiple negative feedback loops that underlie redox and bioenergetics homeostasis in the mitochondrion. The model recapitulated the transition phase from adaptive to adverse responses, supporting the notion that saturated induction of PGC-1α-mediated gene network underpins POD. The model further predicts (follow-up experiments verified) that silencing PGC-1α compromises the adaptive function of the transcriptional network, leading to disruption of mitochondria and cytotoxicity at lower DOX concentrations. In summary, our study demonstrates that combining pathway-focusedin vitroassays and computational simulation of relevant biochemical network is synergistic for understanding dose-response behaviors in the low-dose region and identifying POD.
Collapse
Affiliation(s)
- Haitao Yuan
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China;
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; and
| | - Jiabin Guo
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Tingfen Zhang
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jun Zhao
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jin Li
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Andrew White
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Carl Westmoreland
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Shuangqing Peng
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China;
| |
Collapse
|
5
|
Cyclovirobuxine D Attenuates Doxorubicin-Induced Cardiomyopathy by Suppression of Oxidative Damage and Mitochondrial Biogenesis Impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:151972. [PMID: 26075032 PMCID: PMC4446494 DOI: 10.1155/2015/151972] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 01/04/2023]
Abstract
The clinical application of doxorubicin (DOX) is compromised by its cardiac toxic effect. Cyclovirobuxine D (CVB-D) is a steroid alkaloid extracted from a traditional Chinese
medicine, Buxus microphylla. Our results showed that CVB-D pretreatment markedly attenuated DOX-induced cardiac contractile dysfunction and histological alterations. By using TUNEL assay and western blot analysis, we found that CVB-D pretreatment reduced DOX-induced apoptosis of myocardial cells and
mitochondrial cytochrome c release to cytosol. CVB-D pretreatment ameliorated DOX-induced cardiac oxidative damage including lipid peroxidation and protein carbonylation and a decrease in the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Moreover, CVB-D was found to prevent DOX-induced mitochondrial biogenesis impairment as evidenced by preservation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and nuclear respiratory factor 1 (NRF1), as well as mitochondrial DNA copy number. These findings demonstrate that CVB-D protects against DOX-induced cardiomyopathy, at least in part, by suppression of oxidative damage and mitochondrial biogenesis impairment.
Collapse
|
6
|
Lacaille H, Duterte-Boucher D, Liot D, Vaudry H, Naassila M, Vaudry D. Comparison of the deleterious effects of binge drinking-like alcohol exposure in adolescent and adult mice. J Neurochem 2015; 132:629-41. [PMID: 25556946 DOI: 10.1111/jnc.13020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022]
Abstract
A major cause of alcohol toxicity is the production of reactive oxygen species generated during ethanol metabolism. The aim of this study was to compare the effect of binge drinking-like alcohol exposure on a panel of genes implicated in oxidative mechanisms in adolescent and adult mice. In adolescent animals, alcohol decreased the expression of genes involved in the repair and protection of oxidative DNA damage such as atr, gpx7, or nudt15 and increased the expression of proapoptotic genes such as casp3. In contrast, in the adult brain, genes activated by alcohol were mainly associated with protective mechanisms that prevent cells from oxidative damage. Whatever the age, iterative binge-like episodes provoked the same deleterious effects as those observed after a single binge episode. In adolescent mice, multiple binge ethanol exposure substantially reduced neurogenesis in the dentate gyrus and impaired short-term memory in the novel object and passive avoidance tests. Taken together, our results indicate that alcohol causes deleterious effects in the adolescent brain which are distinct from those observed in adults. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity. The effects of alcohol exposure were investigated on genes involved in oxidative mechanisms. In adolescent animals, alcohol decreased the expression of genes involved in DNA repair, a potential cause of the observed decrease of neurogenesis. In contrast, in the adult brain, alcohol increased the expression of genes associated with antioxidant mechanisms. Apoptosis was increase in all groups and converged with other biochemical alterations to enhance short-term memory impairment in the adolescent brain. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity.
Collapse
Affiliation(s)
- Hélène Lacaille
- INSERM U982, Neurotrophic factors and neuronal differentiation team, Mont-Saint-Aignan, France; International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
7
|
Tan D, Liu Y, Shi L, Li B, Liu L, Bai B, Meng X, Hou M, Liu X, Sheng L, Luo X. Blueberry anthocyanins-enriched extracts attenuate the cyclophosphamide-induced lung toxicity. Chem Biol Interact 2014; 222:106-11. [DOI: 10.1016/j.cbi.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 02/06/2023]
|
8
|
Ren M, Wang YM, Zhao J, Zhao J, Zhao ZM, Zhang TF, He J, Ren SP, Peng SQ. Metallothioneins attenuate paraquat-induced acute lung injury in mice through the mechanisms of anti-oxidation and anti-apoptosis. Food Chem Toxicol 2014; 73:140-7. [PMID: 25111661 DOI: 10.1016/j.fct.2014.07.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/06/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023]
Abstract
Paraquat (PQ) is a widely used herbicide, and lung is the primary target of PQ poisoning. Metallothionein (MT) is a potent antioxidant and free radical scavenger, and has been shown to play a protective role in lung injury induced by different stressors. This study was undertaken to evaluate the protective potential of MT against PQ-induced acute lung injury using MT-I/II null (MT(-/-)) mice. Wild-type (MT(+/+)) mice and MT(-/-) mice were given one intragastric administration of 50mg/kg PQ for 24h, and it was revealed that MT(-/-) mice were more susceptible to PQ-induced acute lung injury than MT(+/+) mice evidenced by the following findings. As compared with MT(+/+) mice, MT(-/-) mice presented more severe histopathological lesions in the lung, higher pulmonary malondialdehyde content, and more reduced pulmonary antioxidative enzymes activities. PQ also induced more apoptosis in pneumocytes from MT(-/-) mice, and the expressions of apoptosis-related proteins Bax, Bcl-2, cleaved-caspase-3, and the ratio of Bax/Bcl-2 were all more significantly increased in PQ-treated MT(-/-) mice. Our results clearly demonstrate that endogenous MT can attenuate PQ-induced acute lung injury, possibly through the mechanisms of anti-oxidation and anti-apoptosis.
Collapse
Affiliation(s)
- Ming Ren
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China; Department of Toxicology, School of Public Health, Jilin University, 1163 Xin Min Street, Chaoyang District, Changchun 130021, PR China
| | - Yi-Mei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Jing Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Jun Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Zeng-Ming Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Ting-Fen Zhang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Jun He
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Shu-Ping Ren
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xin Min Street, Chaoyang District, Changchun 130021, PR China
| | - Shuang-Qing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China.
| |
Collapse
|
9
|
Transcriptome profiling of the newborn mouse brain after hypoxia-reoxygenation: hyperoxic reoxygenation induces inflammatory and energy failure responsive genes. Pediatr Res 2014; 75:517-26. [PMID: 24375083 DOI: 10.1038/pr.2013.249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/13/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Supplemental oxygen used during resuscitation can be detrimental to the newborn brain. The aim was to determine how different oxygen therapies affect gene transcription in a hypoxia-reoxygenation model. METHODS C57BL/6 mice (n = 56), postnatal day 7, were randomized either to 120 min of hypoxia 8% O2 followed by 30 min of reoxygenation with 21, 40, 60, or 100% O2, or to normoxia followed by 30 min of 21 or 100% O2. Affymetrix 750k expression array was applied with RT-PCR used for validation. Histopathology and immunohistochemistry 3 d after hypoxia-reoxygenation compared groups reoxygenated with 21 or 100% O2 with normoxic controls (n = 22). RESULTS In total, ~81% of the gene expression changes were altered in response to reoxygenation with 60 or 100% O2 and constituted many inflammatory-responsive genes (i.e., C5ar2, Stat3, and Ccl12). Oxidative phosphorylation was downregulated after 60 or 100% O2. Iba1(+) cells were significantly increased in the striatum and hippocampal CA1 after both 21 and 100% O2. CONCLUSION In the present model, hypoxia-reoxygenation induces microglial accumulation in subregions of the brain. The transcriptional changes dominating after applying hyperoxic reoxygenation regimes include upregulating genes related to inflammatory responses and suppressing the oxidative phosphorylation pathway.
Collapse
|
10
|
Metallothionein-II inhibits lipid peroxidation and improves functional recovery after transient brain ischemia and reperfusion in rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:436429. [PMID: 24719677 PMCID: PMC3956286 DOI: 10.1155/2014/436429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/04/2014] [Accepted: 01/17/2014] [Indexed: 11/18/2022]
Abstract
After transient cerebral ischemia and reperfusion (I/R), damaging mechanisms, such as excitotoxicity and oxidative stress, lead to irreversible neurological deficits. The induction of metallothionein-II (MT-II) protein is an endogenous mechanism after I/R. Our aim was to evaluate the neuroprotective effect of MT-II after I/R in rats. Male Wistar rats were transiently occluded at the middle cerebral artery for 2 h, followed by reperfusion. Rats received either MT (10 μg per rat i.p.) or vehicle after ischemia. Lipid peroxidation (LP) was measured 22 h after reperfusion in frontal cortex and hippocampus; also, neurological deficit was evaluated after ischemia, using the Longa scoring scale. Infarction area was analyzed 72 hours after ischemia. Results showed increased LP in frontal cortex (30.7%) and hippocampus (26.4%), as compared to control group; this effect was fully reversed by MT treatment. Likewise, we also observed a diminished neurological deficit assessed by the Longa scale in those animals treated with MT compared to control group values. The MT-treated group showed a significant (P < 0.05) reduction of 39.9% in the infarction area, only at the level of hippocampus, as compared to control group. Results suggest that MT-II may be a novel neuroprotective treatment to prevent ischemia injury.
Collapse
|
11
|
Chen X, Lei L, Tian L, Zhu G, Jin T. Bone mineral density and polymorphisms in metallothionein 1A and 2A in a Chinese population exposed to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 423:12-17. [PMID: 22391096 DOI: 10.1016/j.scitotenv.2012.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 02/10/2012] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
Cadmium (Cd) effect on bone varies between individuals. We investigated whether genetic variation in metallothionein (MT)1A and MT2A associated with Cd induced bone loss in this study. A total of 465 persons (311 women and 154 men), living in control, moderately and heavily polluted areas, participated. The participants completed a questionnaire and the bone mineral density (BMD) was measured by dual energy x-ray absorptiometry (DXA) at the proximal radius and ulna. Samples of urine and blood were collected for determination of Cd in urine (UCd) and blood (BCd). Genotypes for polymorphisms in MT1A (rs11076161) and MT2A (rs10636) were determined by Taqman allelic discrimination assays. BCd had a weak association with variant alleles for MT1A (rs11076161) and MT2A (rs10636) in female living in the highly polluted group (p=0.08 and 0.05, respectively). A weak association was found between bone mineral density and MT2A polymorphisms variation (p=0.06) in female living in the highly polluted group. Only a weak association was found between bone mineral density and MT1A polymorphisms variation in female. Genetic variation in the MT1A and MT2A genes may not associate with bone loss caused by cadmium exposure.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
12
|
Santos CRA, Martinho A, Quintela T, Gonçalves I. Neuroprotective and neuroregenerative properties of metallothioneins. IUBMB Life 2011; 64:126-35. [DOI: 10.1002/iub.585] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/09/2011] [Indexed: 12/30/2022]
|
13
|
Gold implants and increased expression of metallothionein-I/II as a novel hypothesized therapeutic approach for autism. Toxicology 2011; 283:63-4. [DOI: 10.1016/j.tox.2011.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/22/2022]
|