1
|
Belakova B, Wedige NK, Awad EM, Hess S, Oszwald A, Fellner M, Khan SY, Resch U, Lipovac M, Šmejkal K, Uhrin P, Breuss JM. Lipophilic Statins Eliminate Senescent Endothelial Cells by inducing Anoikis-Related Cell Death. Cells 2023; 12:2836. [PMID: 38132158 PMCID: PMC10742095 DOI: 10.3390/cells12242836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Pre-clinical studies from the recent past have indicated that senescent cells can negatively affect health and contribute to premature aging. Targeted eradication of these cells has been shown to improve the health of aged experimental animals, leading to a clinical interest in finding compounds that selectively eliminate senescent cells while sparing non-senescent ones. In our study, we identified a senolytic capacity of statins, which are lipid-lowering drugs prescribed to patients at high risk of cardiovascular events. Using two different models of senescence in human vascular endothelial cells (HUVECs), we found that statins preferentially eliminated senescent cells, while leaving non-senescent cells unharmed. We observed that the senolytic effect of statins could be negated with the co-administration of mevalonic acid and that statins induced cell detachment leading to anoikis-like apoptosis, as evidenced by real-time visualization of caspase-3/7 activation. Our findings suggest that statins possess a senolytic property, possibly also contributing to their described beneficial cardiovascular effects. Further studies are needed to explore the potential of short-term, high-dose statin treatment as a candidate senolytic therapy.
Collapse
Affiliation(s)
- Barbora Belakova
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - Nicholas K. Wedige
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - Ezzat M. Awad
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Hess
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - André Oszwald
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Marlene Fellner
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - Shafaat Y. Khan
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
- Department of Zoology, Government College University Lahore, Lahore 54000, Pakistan
| | - Ulrike Resch
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - Markus Lipovac
- Karl Landsteiner Institute for Cell-Based Therapy in Gynecology, 2100 Korneuburg, Austria
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Pavel Uhrin
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - Johannes M. Breuss
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| |
Collapse
|
2
|
Tian X, Jia Y, Guo Y, Liu H, Cai X, Li Y, Tian Z, Sun C. Fibroblast growth factor 2 acts as an upstream regulator of inhibition of pulmonary fibroblast activation. FEBS Open Bio 2023; 13:1895-1909. [PMID: 37583315 PMCID: PMC10549223 DOI: 10.1002/2211-5463.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling plays a crucial role in lung development and repair. Fibroblast growth factor 2 (FGF2) can inhibit fibrotic gene expression and suppress the differentiation of pulmonary fibroblasts (PFs) into myofibroblasts in vitro, suggesting that FGF2 is a potential target for inhibiting pulmonary fibrosis. To gain deeper insights into the molecular mechanism underlying FGF2-mediated regulation of PFs, we performed mRNA sequencing analysis to systematically and globally uncover the regulated genes and biological functions of FGF2 in PFs. Gene Ontology analysis revealed that the differentially expressed genes regulated by FGF2 were enriched in multiple cellular functions including extracellular matrix (ECM) organization, cytoskeleton formation, β-catenin-independent Wnt signaling pathway, supramolecular fiber organization, epithelial cell proliferation, and cell adhesion. Gene Set Enrichment Analysis and cellular experiments confirmed that FGF2 can suppress ECM and actin filament organization and increase PFs proliferation. Taken together, these findings indicate that FGF2 acts as an upstream regulator of the inhibition of PFs activation and may play a regulatory role in pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiangqin Tian
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Yonglong Guo
- Department of Cardiology, The First Affiliated HospitalXinxiang Medical UniversityChina
| | - Hongyin Liu
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Xinhua Cai
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Yong Li
- Department of Biochemistry, Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolUK
| | - Zhuangzhuang Tian
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Changye Sun
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| |
Collapse
|
3
|
Statins Induce Actin Cytoskeleton Disassembly and an Apoptosis-Like Process in Acanthamoeba spp. Antibiotics (Basel) 2022; 11:antibiotics11020280. [PMID: 35203882 PMCID: PMC8868517 DOI: 10.3390/antibiotics11020280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Acanthamoeba is a ubiquitous opportunistic protozoan pathogen that is known to cause blinding keratitis and rare, but usually fatal, granulomatous encephalitis. The difficulty in treating infections and the toxicity issues of the current treatments emphasize the need to use alternative agents with amoebicidal activity. The aim of this study was to evaluate the in vitro antiamoebic activity of three third-generation statins—cerivastatin, pitavastatin and rosuvastatin—against both cysts and trophozoites of the following four strains of Acanthamoeba: A. castellanii Neff, A. polyphaga, A. griffini and A. quina. Furthermore, programmed cell death (PCD) induction traits were evaluated by measuring chromatin condensation, damages at the mitochondrial level, production of reactive oxygen species (ROS) and the distribution of actin cytoskeleton fibers. Acanthamoeba castellanii Neff was the strain most sensitive to all the statins, where cerivastatin showed the lowest amoebicidal activity for both trophozoite and cyst forms (0.114 ± 0.050 and 0.704 ± 0.129 µM, respectively). All the statins were able to cause DNA condensation, collapse in the mitochondrial membrane potential and a reduction in ATP level production, and disorganization of the total actin fibers in the cytoskeleton of all the evaluated Acanthamoeba strains. Our results showed that the tested statins were able to induce PCD compatible events in the treated amoebae, including chromatin condensation, collapse in the mitochondrial potential and ATP levels, cytoskeleton disassembly and ROS generation.
Collapse
|
4
|
Ye H, Sun M, Huang S, Xu F, Wang J, Liu H, Zhang L, Luo W, Guo W, Wu Z, Zhu J, Li H. Gene Network Analysis of Hepatocellular Carcinoma Identifies Modules Associated with Disease Progression, Survival, and Chemo Drug Resistance. Int J Gen Med 2021; 14:9333-9347. [PMID: 34898998 PMCID: PMC8654693 DOI: 10.2147/ijgm.s336729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. HCC transcriptome has been extensively studied; however, the progress in disease mechanisms, prognosis, and treatment is still slow. Methods A rank-based module-centric workflow was introduced to analyze important modules associated with HCC development, prognosis, and drug resistance. The currently largest HCC cell line RNA-Seq dataset from the LIMORE database was used to construct the reference modules by weighted gene co-expression network analysis. Results Thirteen reference modules were identified with validated reproducibility. These modules were all associated with specific biological functions. Differentially expressed module analysis revealed the crucial modules during HCC development. Modules and hub genes are indicative of patient survival. Modules can differentiate patients in different HCC stages. Furthermore, drug resistance was revealed by drug-module association analysis. Based on differentially expressed modules and hub genes, six candidate drugs were screened. The hub genes of those modules merit further investigation. Conclusion We proposed a reference module-based analysis of the HCC transcriptome. The identified modules are associated with HCC development, survival, and drug resistance. M3 and M6 may play important roles during HCV to HCC development. M1, M3, M5, and M7 are associated with HCC survival. High M4, high M9, low M1, and low M3 may be associated with dasatinib, doxorubicin, CD532, and simvastatin resistance. Our analysis provides useful information for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Mengxia Sun
- Department of Clinical Medicine, Medical School of Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Shiliang Huang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Feng Xu
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Jian Wang
- Department of Dermatology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Huiwei Liu
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Liangshun Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Wenjing Luo
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Wenying Guo
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Zhe Wu
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Jie Zhu
- Department of Hepatobiliary Surgery, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Hong Li
- Department of Hepatobiliary Surgery, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| |
Collapse
|
5
|
Camerino GM, Tarantino N, Canfora I, De Bellis M, Musumeci O, Pierno S. Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence. Int J Mol Sci 2021; 22:ijms22042070. [PMID: 33669797 PMCID: PMC7921957 DOI: 10.3390/ijms22042070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Statins are the most prescribed and effective drugs to treat cardiovascular diseases (CVD). Nevertheless, these drugs can be responsible for skeletal muscle toxicity which leads to reduced compliance. The discontinuation of therapy increases the incidence of CVD. Thus, it is essential to assess the risk. In fact, many studies have been performed at preclinical and clinical level to investigate pathophysiological mechanisms and clinical implications of statin myotoxicity. Consequently, new toxicological aspects and new biomarkers have arisen. Indeed, these drugs may affect gene transcription and ion transport and contribute to muscle function impairment. Identifying a marker of toxicity is important to prevent or to cure statin induced myopathy while assuring the right therapy for hypercholesterolemia and counteracting CVD. In this review we focused on the mechanisms of muscle damage discovered in preclinical and clinical studies and highlighted the pathological situations in which statin therapy should be avoided. In this context, preventive or substitutive therapies should also be evaluated.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Nancy Tarantino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Ileana Canfora
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
- Correspondence:
| |
Collapse
|
6
|
Yin M, Li C, Jiang J, Le J, Luo B, Yang F, Fang Y, Yang M, Deng Z, Ni W, Shao J. Cell adhesion molecule-mediated therapeutic strategies in atherosclerosis: From a biological basis and molecular mechanism to drug delivery nanosystems. Biochem Pharmacol 2021; 186:114471. [PMID: 33587918 DOI: 10.1016/j.bcp.2021.114471] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 01/13/2023]
Abstract
Atherosclerosis (AS), characterized by pathological constriction of blood vessels due to chronic low-grade inflammation and lipid deposition, is a leading cause of human morbidity and mortality worldwide. Cell adhesion molecules (CAMs) have the ability to regulate the inflammatory response and endothelial function, as well as potentially driving plaque rupture, which all contribute to the progression of AS. Moreover, recent advances in the development of clinical agents in the cardiovascular field are based on CAMs, which show promising results in the fight against AS. Here, we review the current literature on mechanisms by which CAMs regulate atherosclerotic progression from the earliest induction of inflammation to plaques formation. In particular, we focused on therapeutic strategies based on CAMs inhibitors that prevent leukocyte from migrating to endothelium, including high-affinity antibodies and antagonists, nonspecific traditional medicinal formulas and lipid lowering drugs. The CAMs-based drug delivery nanosystem and the available data on the more reasonable and effective clinical application of CAMs inhibitors have been emphasized, raising hope for further progress in the field of AS therapy.
Collapse
Affiliation(s)
- Mengdie Yin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jiali Jiang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jingqing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bangyue Luo
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Fang Yang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yifan Fang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Mingyue Yang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zhenhua Deng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Wenxin Ni
- Ocean College, Minjiang University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
7
|
Sainio A, Järveläinen H. Extracellular Matrix Macromolecules as Potential Targets of Cardiovascular Pharmacotherapy. ADVANCES IN PHARMACOLOGY 2018; 81:209-240. [DOI: 10.1016/bs.apha.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Chen MC, Tsai YC, Tseng JH, Liou JJ, Horng S, Wen HC, Fan YC, Zhong WB, Hsu SP. Simvastatin Inhibits Cell Proliferation and Migration in Human Anaplastic Thyroid Cancer. Int J Mol Sci 2017; 18:ijms18122690. [PMID: 29236027 PMCID: PMC5751292 DOI: 10.3390/ijms18122690] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/29/2017] [Accepted: 12/09/2017] [Indexed: 12/12/2022] Open
Abstract
Malignant human anaplastic thyroid cancer (ATC) is pertinacious to conventional therapies. The present study investigated the anti-cancer activity of simvastatin and its underlying regulatory mechanism in cultured ATC cells. Simvastatin (0–20 μM) concentration-dependently reduced cell viability and relative colony formation. Depletions of mevalonate (MEV) and geranylgeranyl pyrophosphate (GGpp) by simvastatin induced G1 arrest and increased apoptotic cell populations at the sub-G1 phase. Adding MEV and GGpp prevented the simvastatin-inhibited cell proliferation. Immunoblotting analysis illustrated that simvastatin diminished the activation of RhoA and Rac1 protein, and this effect was prevented by pre-treatment with MEV and GGpp. Simvastatin increased the levels of p21cip and p27kip proteins and reduced the levels of hyperphosphorylated-Rb, E2F1 and CCND1 proteins. Adding GGpp abolished the simvastatin-increased levels of p27kip protein, and the GGpp-caused effect was abolished by Skp2 inhibition. Introduction of Cyr61 siRNA into ATC cells prevented the epidermal growth factor (EGF)-enhanced cell migration. The EGF-induced increases of Cyr61 protein expression and cell migration were prevented by simvastatin. Taken together, these results suggest that simvastatin induced ATC proliferation inhibition through the deactivation of RhoA/Rac1 protein and overexpression of p21cip and p27kip, and migration inhibition through the abrogation of Cyr61 protein expression.
Collapse
Affiliation(s)
- Mei-Chieh Chen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yuan-Chin Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Jen-Ho Tseng
- Department of Neurosurgery, Taipei City Hospital, Renai Branch, Taipei 106, Taiwan.
| | - Jr-Jiun Liou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Steve Horng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Heng-Ching Wen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Ching Fan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Wen-Bin Zhong
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Sung-Po Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
9
|
Chubinskiy-Nadezhdin VI, Negulyaev YA, Morachevskaya EA. Simvastatin induced actin cytoskeleton disassembly in normal and transformed fibroblasts without affecting lipid raft integrity. Cell Biol Int 2017; 41:1020-1029. [PMID: 28656734 DOI: 10.1002/cbin.10812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/24/2017] [Indexed: 02/02/2023]
Abstract
Statins are the most commonly prescribed agents used to modulate cholesterol levels in course of hypercholesterolemia treatment because of their relative tolerability and LDL-C lowering effect. Recently, there are emerging interests in the perspectives of statin drugs as anticancer agents based on preclinical evidence of their antiproliferative, proapoptotic, and anti-invasive properties. Functional impact of statin application on transformed cells still remains obscure that requires systematic study on adequate cellular models to provide correct comparison with their non-transformed counterparts. Cholesterol is the major lipid component of mammalian cells and it plays a crucial role in organization, lateral heterogeneity, and dynamics of plasma membrane as well as in membrane-cytoskeleton interrelations. To date, it is uncertain whether cellular effects of statins involve lipid-dependent alteration of plasma membrane. Here, the effects of simvastatin on lipid rafts, F-actin network and cellular viability were determined in comparative experiments on transformed fibroblasts and their non-transformed counterpart. GM1 lipid raft marker staining indicated no change of lipid raft integrity after short- or long-term simvastatin treatments. In the same time, simvastatin induced cytoskeleton rearrangement including partial F-actin disruption in cholesterol- and lipid raft-independent manner. Simvastatin dose-dependently affected viability of BALB/3T3 and 3T3B-SV40 cell lines: transformed fibroblasts were noticeably more sensitive to simvastatin comparing to non-transformed cells.
Collapse
Affiliation(s)
| | - Yuri A Negulyaev
- Institute of Cytology RAS, 4 Tikhoretsky Ave., St. Petersburg, 194064, Russia.,Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya st., St.Petersburg, 195251, Russia
| | | |
Collapse
|
10
|
Yang SH, Lin HY, Changou CA, Chen CH, Liu YR, Wang J, Jiang X, Luh F, Yen Y. Integrin β3 and LKB1 are independently involved in the inhibition of proliferation by lovastatin in human intrahepatic cholangiocarcinoma. Oncotarget 2016; 7:362-73. [PMID: 26517522 PMCID: PMC4808004 DOI: 10.18632/oncotarget.6238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Human intrahepatic cholangiocarcinomas are one of the most difficult cancers to treat. In our study, Lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme-CoA (HMG-CoA) reductase inhibitor, demonstrated anticancer properties by inhibiting cancer cell proliferation, cell migration and cell adhesion. Lovastatin inhibited the expressions of transforming growth factor (TGF)-β1, cyclooxygenase (COX)-2, and intercellular adhesion molecule (ICAM)-1. Furthermore, lovastatin inhibited the expressions of integrin β1 and integrin β3 but not integrin αv or integrin β5. While Lovastatin's inhibitory effects on TGFβ1, COX2, and ICAM-1 expression were independently controlled by the tumor suppressor LKB1, integrin β3 expression was not affected. Lovastatin's inhibitory effect on cell adhesion was associated with the decreased expression of integrin β3 and cell surface heterodimer integrin αvβ3. Quantitative real time PCR, fluorescent microscopy, and cell migration assays all confirmed that Lovastatin inhibits integrin αvβ3 downstream signaling including FAK activation, and β-catenin, vimentin, ZO-1, and β-actin. Overall, Lovastatin reduced tumor cell proliferation and migration by modifying the expression of genes involved in cell adhesion and other critical cellular processes. Our study highlights novel anti-cancer properties of Lovastatin and supports further exploration of statins in the context of cholangiocarcinoma therapy.
Collapse
Affiliation(s)
- Sheng-Huei Yang
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Chun A Changou
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Core Facility, Taipei Medical University, Taipei, Taiwan
| | - Chun-Han Chen
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Jinghan Wang
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoqing Jiang
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai, China
| | - Frank Luh
- School of medicine, Taipei Medical University, Taipei, Taiwan.,Sino-American Cancer Foundation, Arcadia, California, United States
| | - Yun Yen
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Effects of linagliptin and liraglutide on glucose- and angiotensin II-induced collagen formation and cytoskeleton degradation in cardiac fibroblasts in vitro. Acta Pharmacol Sin 2016; 37:1349-1358. [PMID: 27498780 DOI: 10.1038/aps.2016.72] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022]
Abstract
AIM Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors can not only lower blood glucose levels, but also alleviate cardiac remodeling after myocardial ischemia and hypertension. In the present study, we investigated the effects of a DPP-4 inhibitor (linagliptin) and a GLP-1 activator (liraglutide) on glucose- and angiotensin II (Ang II)-induced collagen formation and cytoskeleton reorganization in cardiac fibroblasts in vitro, and elucidated the related mechanisms. METHODS Cardiac fibroblasts were isolated from the hearts of 6-week-old C57BL/6 mice, and then exposed to different concentrations of glucose or Ang II for 24 h. The expression of fibrotic signals (fibronectin, collagen-1, -3 and -4), as well as ERK1/2 and NF-κB-p65 in the fibroblasts was examined using Western blotting assays. F-actin degradation was detected under inverted laser confocal microscope in fibroblasts stained with Rhodamine phalloidin. RESULTS Glucose (1-40 mmol/L) and Ang II (10-8-10-5 mol/L) dose-dependently increased the expression of fibronectin, collagens, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. High concentrations of glucose (≥40 mmol/L) and Ang II (≥10-6 mol/L) caused a significant degradation of F-actin (less assembly F-actin fibers and more disassembly fibers). ERK1/2 inhibitor U0126 (10 μmol/L) and NF-κB inhibitor JSH-23 (10 μmol/L) both markedly suppressed glucose- and angiotensin II-induced fibronectin and collagen expressions in cardiac fibroblasts. Furthermore, pretreatment with liraglutide (10-100 nmol/L) or linagliptin (3 and 30 nmol/L) significantly decreased glucose- and Ang II-induced expression of fibrotic signals, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. Moreover, pretreatment with liraglutide (30 nmol/L) or liraglutide (100 nmol/L) markedly inhibited glucose-induced F-actin degradation, however, only liraglutide inhibited Ang II-induced F-actin degradation. CONCLUSION Linagliptin and liraglutide inhibit glucose- and Ang II-induced collagen formation in cardiac fibroblasts via activation of the ERK/NF-κB/pathway. Linagliptin and liraglutide also markedly inhibit glucose-induced F-actin degradation in cardiac fibroblasts, but only liraglutide inhibits Ang II-induced F-actin degradation.
Collapse
|
12
|
Higuita-Castro N, Shukla VC, Mihai C, Ghadiali SN. Simvastatin Treatment Modulates Mechanically-Induced Injury and Inflammation in Respiratory Epithelial Cells. Ann Biomed Eng 2016; 44:3632-3644. [PMID: 27411707 DOI: 10.1007/s10439-016-1693-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022]
Abstract
Mechanical forces in the respiratory system, including surface tension forces during airway reopening and high transmural pressures, can result in epithelial cell injury, barrier disruption and inflammation. In this study, we investigated if a clinically relevant pharmaceutical agent, Simvastatin, could mitigate mechanically induced injury and inflammation in respiratory epithelia. Pulmonary alveolar epithelial cells (A549) were exposed to either cyclic airway reopening forces or oscillatory transmural pressure in vitro and treated with a wide range of Simvastatin concentrations. Simvastatin induced reversible depolymerization of the actin cytoskeleton and a statistically significant reduction the cell's elastic modulus. However, Simvastatin treatment did not result in an appreciable change in the cell's viscoelastic properties. Simvastatin treated cells did exhibit a reduced height-to-width aspect ratio and these changes in cell morphology resulted in a significant decrease in epithelial cell injury during airway reopening. Interestingly, although very high concentrations (25-50 µM) of Simvastatin resulted in dramatically less IL-6 and IL-8 pro-inflammatory cytokine secretion, 2.5 µM Simvastatin did not reduce the total amount of pro-inflammatory cytokines secreted during mechanical stimulation. These results indicate that although Simvastatin treatment may be useful in reducing cell injury during airway reopening, elevated local concentrations of Simvastatin might be needed to reduce mechanically-induced injury and inflammation in respiratory epithelia.
Collapse
Affiliation(s)
- N Higuita-Castro
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - V C Shukla
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - C Mihai
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA
| | - S N Ghadiali
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA. .,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
13
|
Kuzma-Kuzniarska M, Cornell HR, Moneke MC, Carr AJ, Hulley PA. Lovastatin-Mediated Changes in Human Tendon Cells. J Cell Physiol 2015; 230:2543-51. [PMID: 25846724 PMCID: PMC4832302 DOI: 10.1002/jcp.25010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/31/2015] [Indexed: 01/18/2023]
Abstract
Statins are among the most widely prescribed drugs worldwide. Numerous studies have shown their beneficial effects in prevention of cardiovascular disease through cholesterol-lowering and anti-atherosclerotic properties. Although some statin patients may experience muscle-related symptoms, severe side effects of statin therapy are rare, primarily due to extensive first-pass metabolism in the liver. Skeletal muscles appear to be the main site of side effects; however, recently some statin-related adverse effects have been described in tendon. The mechanism behind these side effects remains unknown. This is the first study that explores tendon-specific effects of statins in human primary tenocytes. The cells were cultured with different concentrations of lovastatin for up to 1 week. No changes in cell viability or morphology were observed in tenocytes incubated with therapeutic doses. Short-term exposure to lovastatin concentrations outside the therapeutic range had no effect on tenocyte viability; however, cell migration was reduced. Simvastatin and atorvastatin, two other drug family members, also reduced the migratory properties of the cells. Prolonged exposure to high concentrations of lovastatin induced changes in cytoskeleton leading to cell rounding and decreased levels of mRNA for matrix proteins, but increased BMP-2 expression. Gap junctional communication was impaired but due to cell shape change and separation rather than direct gap junction inhibition. These effects were accompanied by inhibition of prenylation of Rap1a small GTPase. Collectively, we showed that statins in a dose-dependent manner decrease migration of human tendon cells, alter their expression profile and impair the functional network, but do not inhibit gap junction function.
Collapse
Affiliation(s)
- Maria Kuzma-Kuzniarska
- Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Hannah R Cornell
- Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael C Moneke
- Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Andrew J Carr
- Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Philippa A Hulley
- Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Campos-Estrada C, Liempi A, González-Herrera F, Lapier M, Kemmerling U, Pesce B, Ferreira J, López-Muñoz R, Maya JD. Simvastatin and Benznidazole-Mediated Prevention of Trypanosoma cruzi-Induced Endothelial Activation: Role of 15-epi-lipoxin A4 in the Action of Simvastatin. PLoS Negl Trop Dis 2015; 9:e0003770. [PMID: 25978361 PMCID: PMC4433340 DOI: 10.1371/journal.pntd.0003770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas Disease that is endemic in Latin American, afflicting more than ten million people approximately. This disease has two phases, acute and chronic. The acute phase is often asymptomatic, but with time it progresses to the chronic phase, affecting the heart and gastrointestinal tract and can be lethal. Chronic Chagas cardiomyopathy involves an inflammatory vasculopathy. Endothelial activation during Chagas disease entails the expression of cell adhesion molecules such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) through a mechanism involving NF-κB activation. Currently, specific trypanocidal therapy remains on benznidazole, although new triazole derivatives are promising. A novel strategy is proposed that aims at some pathophysiological processes to facilitate current antiparasitic therapy, decreasing treatment length or doses and slowing disease progress. Simvastatin has anti-inflammatory actions, including improvement of endothelial function, by inducing a novel pro-resolving lipid, the 5-lypoxygenase derivative 15-epi-lipoxin A4 (15-epi-LXA4), which belongs to aspirin-triggered lipoxins. Herein, we propose modifying endothelial activation with simvastatin or benznidazole and evaluate the pathways involved, including induction of 15-epi-LXA4. The effect of 5 μM simvastatin or 20 μM benznidazole upon endothelial activation was assessed in EA.hy926 or HUVEC cells, by E-selectin, ICAM-1 and VCAM-1 expression. 15-epi-LXA4 production and the relationship of both drugs with the NFκB pathway, as measured by IKK-IKB phosphorylation and nuclear migration of p65 protein was also assayed. Both drugs were administered to cell cultures 16 hours before the infection with T. cruzi parasites. Indeed, 5 μM simvastatin as well as 20 μM benznidazole prevented the increase in E-selectin, ICAM-1 and VCAM-1 expression in T. cruzi-infected endothelial cells by decreasing the NF-κB pathway. In conclusion, Simvastatin and benznidazole prevent endothelial activation induced by T. cruzi infection, and the effect of simvastatin is mediated by the inhibition of the NFκB pathway by inducing 15-epi-LXA4 production.
Collapse
Affiliation(s)
- Carolina Campos-Estrada
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ana Liempi
- Anatomy and Developmental Biology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabiola González-Herrera
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Michel Lapier
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Anatomy and Developmental Biology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Barbara Pesce
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Ferreira
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo López-Muñoz
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D. Maya
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
15
|
Ruggieri A, Gambardella L, Maselli A, Vona R, Anticoli S, Panusa A, Malorni W, Matarrese P. Statin-induced impairment of monocyte migration is gender-related. J Cell Physiol 2014; 229:1990-8. [PMID: 24777636 DOI: 10.1002/jcp.24657] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/25/2014] [Indexed: 11/07/2022]
Abstract
Statins, widely used for treatment of hypercholesterolemia, have been demonstrated to exert pleiotropic beneficial effects independently of their cholesterol-lowering action, such as anti-inflammatory activity. A gender disparity has been observed in their cholesterol lowering activity as well as in response to these "off label" effects. Monocytes play a central role in atherosclerotic disease and, more in general, in inflammatory responses, through their chemotactic function and cytokine production. On these bases, in the present work, we examined the effect of statins on homeostasis and migration properties of freshly isolated monocytes from male and female healthy donors. Two prototypic natural and synthetic statins with different polarity, that is, type 1 and type 2 statins, have been considered: simvastatin and atorvastatin. Freshly isolated monocytes from peripheral blood of male and female healthy donors were treated with these drugs in the absence or presence of lipopolysaccharide (LPS) stimulation. Results obtained indicated that the polar statin efficiently inhibited chemotaxis of monocytes more than the apolar statin and that this effect was more significantly induced in cells from females than in cells from males. Dissecting the mechanisms involved, we found that these results could mainly be due to differential effects on: (i) the release of key cytokines, for example, MCP-1 and TNF-α; (ii) the maintenance of the redox homeostasis; (iii) a target activity on microfilament network integrity and function. All in all these results could suggest a reappraisal of "off-label" effects of statins taking into account either their chemical structure, that is, molecular polarity, or the gender issue.
Collapse
Affiliation(s)
- Anna Ruggieri
- Department of Infectious, Parasitic and Immune Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
CD1d favors MHC neighborhood, GM1 ganglioside proximity and low detergent sensitive membrane regions on the surface of B lymphocytes. Biochim Biophys Acta Gen Subj 2014. [DOI: 10.1016/j.bbagen.2013.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Saewong S, Thammasitboon K, Wattanaroonwong N. Simvastatin induces apoptosis and disruption of the actin cytoskeleton in human dental pulp cells and periodontal ligament fibroblasts. Arch Oral Biol 2013; 58:964-74. [PMID: 23561831 DOI: 10.1016/j.archoralbio.2013.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/22/2012] [Accepted: 03/04/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Simvastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, and widely used as cholesterol-lowering agent, has been suggested for its beneficial effects on alveolar bone formation, regeneration of dental pulp tissue and periodontal ligament. High doses of simvastatin appear to induce apoptosis in several cell types, but little is known about its possible effect on tooth-associated cells. Therefore, the effects of simvastatin were studied on apoptosis and cell morphology of human dental pulp cells (HDPCs) and periodontal ligament fibroblasts (HPLFs). METHODS HDPCs/HPLFs obtained from 4 patients were cultured with or without various concentrations of simvastatin (0.1, 1, and 10μM) for 24, 48, and 72h. The 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate cell viability. The levels of apoptosis of HDPCs and HPLFs were measured by flow cytometry after Annexin V/propidium iodide double staining. Phalloidin-FITC and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining was used to examine differences in the actin cytoskeleton and nuclear morphology, respectively. RESULTS The viability of HDPCs and HPLFs was significantly reduced after simvastatin treatment in a dose- and time-dependent manner (p<0.05). The apoptosis of HDPCs and HPLFs was significantly increased in 10μM simvastatin-treated cells (p<0.05). The effect on apoptosis was comparable for HDPCs and HPLFs. Nuclear staining showed typical apoptotic nuclear condensation and fragmentation in simvastatin-treated HDPCs/HPLFs. A dose- and time-dependent simvastatin-induced disruption of the actin cytoskeleton was observed in both cell types. CONCLUSION Our data demonstrated that simvastatin decreases the viability of HDPCs and HPLFs, probably by inducing apoptosis.
Collapse
Affiliation(s)
- Sirinart Saewong
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University PSU, 15 Karnjanavanit Road, Haad Yai, Songkhla 90112, Thailand
| | | | | |
Collapse
|
18
|
Lovastatin-induced decrease of intracellular cholesterol level attenuates fibroblast-to-myofibroblast transition in bronchial fibroblasts derived from asthmatic patients. Eur J Pharmacol 2013; 704:23-32. [PMID: 23485731 DOI: 10.1016/j.ejphar.2013.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 01/17/2023]
Abstract
Chronic inflammation of the airways and structural changes in the bronchial wall are basic hallmarks of asthma. Human bronchial fibroblasts derived from patients with diagnosed asthma display in vitro predestination towards TGF-β-induced fibroblast-to-myofibroblast transition (FMT), a key event in the bronchial wall remodelling. Statins inhibit 3-hydroxymethyl-3-glutaryl coenzyme A reductase, a key enzyme in the cholesterol synthesis pathway and are widely used as antilipidemic drugs. The pleiotropic anti-inflammatory effects of statins, independent of their cholesterol-lowering capacity, are also well established. Since commonly used anti-asthmatic drugs do not reverse the structural remodelling of the airways and statins have tentative anti-asthmatic activity, we have studied the effect of lovastatin on FMT in populations of human bronchial fibroblasts derived from asthmatic patients. We demonstrate that the intensity of FMT induced by TGF-β1 was strongly and dose-dependently attenuated by lovastatin. Furthermore, we show that neither the suppression of prenylation of signalling proteins nor the effect on reactive oxygen species formation are important for lovastatin-induced inhibition of myofibroblast differentiation. On the other hand, we show that a squalene synthase inhibitor, zaragozic acid A, reduced the TGF-β1-induced FMT to an extent comparable to lovastatin effect. Additionally we demonstrate that in bronchial fibroblast populations, both inhibitors (lovastatin and zaragozic acid A) attenuate the TGF-β1-induced Smad2 nuclear translocation in a manner dependent on intracellular cholesterol level. Our data suggest that statins can directly, by decrease of intracellular cholesterol level, affect basic cell signalling events crucial for asthmatic processes and potentially prevent perilous bronchial wall remodelling associated with intensive myofibroblast formation.
Collapse
|