1
|
Vitucci ECM, Carberry CK, Payton A, Herring LE, Mordant AL, Kim YH, Gilmour MI, McCullough SD, Rager JE. Wildfire-relevant woodsmoke and extracellular vesicles (EVs): Alterations in EV proteomic signatures involved in extracellular matrix degradation and tissue injury in airway organotypic models. ENVIRONMENTAL RESEARCH 2025; 264:120395. [PMID: 39571711 DOI: 10.1016/j.envres.2024.120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Wildfires adversely impact air quality and public health worldwide. Exposures to wildfire smoke are linked to adverse health outcomes, including cardiopulmonary diseases. Critical research gaps remain surrounding the underlying biological pathways leading to wildfire-induced health effects. The regulation of intercellular communication and downstream toxicity driven by extracellular vesicles (EVs) is an important, understudied biological mechanism. This study investigated EVs following a wildfire smoke-relevant in vitro exposure. We hypothesized that woodsmoke (WS) would alter the proteomic content of EVs secreted in organotypic in vitro airway models. Exposures were carried out using a tri-culture model of alveolar epithelial cells, fibroblasts, and endothelial cells and a simplified co-culture model of alveolar epithelial cells and fibroblasts to inform responses across different cell populations. Epithelial cells were exposed to WS condensate and EVs were isolated from basolateral conditioned medium following 24 h exposure. WS exposure did not influence EV particle characteristics, and it moderately increased EV count. Exposure caused the differential loading of 25 and 35 proteins within EVs collected from the tri- and co-culture model, respectively. EV proteins involved in extracellular matrix degradation and wound healing were consistently modulated across both models. However, distinct proteins involved in the wound healing pathway were altered between models, suggesting unique but concerted efforts across cell types to communicate in response to injury. These findings demonstrate that a wildfire-relevant exposure alters the EV proteome and suggest an impact on EV-mediated intercellular communication. Overall, results demonstrate the viability of organotypic approaches in evaluating EVs to investigate exposure-induced biomarkers and underlying mechanisms. Findings also highlight the impact of differences in the biological complexity of in vitro models used to evaluate the effects of inhaled toxicants.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA; Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie L Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shaun D McCullough
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Exposure and Protection Group, Technology Advancement and Commercialization Unit, Research Triangle Institute International, Durham, NC 27709, USA; Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Vitucci ECM, Simmons AE, Martin EM, McCullough SD. Epithelial MAPK signaling directs endothelial NRF2 signaling and IL-8 secretion in a tri-culture model of the alveolar-microvascular interface following diesel exhaust particulate (DEP) exposure. Part Fibre Toxicol 2024; 21:15. [PMID: 38468337 PMCID: PMC10926573 DOI: 10.1186/s12989-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Particulate matter 2.5 (PM2.5) deposition in the lung's alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM2.5 deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR. METHODS An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM2.5 exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm2) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure. RESULTS Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells. CONCLUSIONS Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM2.5 exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Alysha E Simmons
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth M Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Shaun D McCullough
- Exposure and Protection, RTI International, 3040 East Cornwallis Road, Durham, NC, USA.
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Aquino GV, Dabi A, Odom GJ, Zhang F, Bruce ED. Evaluating the endothelial-microglial interaction and comprehensive inflammatory marker profiles under acute exposure to ultrafine diesel exhaust particles in vitro. Toxicology 2021; 454:152748. [PMID: 33727093 DOI: 10.1016/j.tox.2021.152748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Exposure to combustion-derived particulate matter (PM) such as diesel exhaust particles (DEP) is a public health concern because people in urban areas are continuously exposed, and once inhaled, fine and ultrafine DEP may reach the brain. The blood-brain barrier (BBB) endothelial cells (EC) and the perivascular microglia protect the brain from circulating pathogens and neurotoxic molecules like DEP. While the BBB-microglial interaction is critical for maintaining homeostasis, no study has previously evaluated the endothelial-microglial interaction nor comprehensively characterized these cells' inflammatory marker profiles under ultrafine DEP exposures in vitro. Therefore, the goal of this study was to investigate the in vitro rat EC-microglial co-culture under acute (24 h.) exposure to ultrafine DEP (0.002-20 μg/mL), by evaluating key mechanisms associated with PM toxicity: lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) generation, cell metabolic activity (CMA) changes, and production of 27 inflammatory markers. These parameters were also evaluated in rat microglial and endothelial monocultures to determine whether the EC-microglial co-culture responded differently than the cerebrovasculature and microglia alone. While results indicated that ultrafine DEP exposure caused concentration-dependent increases in LDH leakage and ROS production in all groups, as expected, exposure also caused mixed responses in CMA and atypical cytokine/chemokine profiles in all groups, which was not expected. The inflammation assay results further suggested that the microglia were not classically activated under this exposure scenario, despite previous in vitro studies showing microglial activation (priming) at similar concentrations of ultrafine DEP. Additionally, compared to the cerebrovasculature alone, the EC-microglia interaction in the co-culture did not appear to cause changes in any parameter save in pro-inflammatory marker production, where the interaction appeared to cause an overall downregulation in cytokine/chemokine levels after ultrafine DEP exposure. Finally, to our knowledge, this is the first study to evaluate the influence of microglia on the BBB's ultrafine DEP-induced cytotoxic and inflammatory responses, which are heavily implicated in the pathogenesis of PM-related cerebrovascular dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Grace V Aquino
- Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA
| | - Amjad Dabi
- Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA
| | - Gabriel J Odom
- Department of Biostatistics Stempel College of Public Health, Florida International University, 11200 SW 8(th)Street, AHC4-470, Miami, FL, 33199, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, The University of Miami, 1600 NW 10th Ave. 1140, Miami, FL, 33136, USA
| | - Fan Zhang
- Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA
| | - Erica D Bruce
- Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA.
| |
Collapse
|
4
|
Lin CH, Tseng CY, Chao MW. Administration of Lactobacillus paracasei HB89 mitigates PM2.5-induced enhancement of inflammation and allergic airway response in murine asthma model. PLoS One 2020; 15:e0243062. [PMID: 33284823 PMCID: PMC7721166 DOI: 10.1371/journal.pone.0243062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023] Open
Abstract
PM2.5 causes abnormal immune response and asthma in animals. In this study, a Balb/c mouse animal model was exposed to PM2.5 to induce asthma. Lactobacillus paracasei HB89 was fed at the same time, in order to observe whether L. paracasei HB89 mitigates respiratory tract allergies stimulated by PM2.5. The results showed that PM2.5 stimulated a significant increase in white blood cells and immunoglobulin (IgE) in OVA-induced allergic Balb/c mice, and IgE in the blood further triggered the release of histamine in the lung immune cells. This not only increased overall immune cell counts, but the lymphocyte counts also increased significantly, resulting in significant inhibitions of cytokines INF-r and TGF-β, and induction of IL-4, IL-5, IL-13 and IL-17a. After feeding with HB89, apart from the absence of observable changes in body weight, the total white blood cell count in the animal blood and IgE response were also be reduced; the proliferation of immune cells in the lungs caused by PM2.5 was slowed down; and histamine and cytokines INF-r and TGF-β were secreted in large quantities, but IL- 4, IL-5, IL-13, IL-17a were inhibited, which effectively reduced the possibility of asthma induction.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Cruz M, Sanchez-Díez S, I O, Romero-Mesones C, J V, Velde G V, X M. The immunomodulatory effects of diesel exhaust particles in asthma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114600. [PMID: 33618472 DOI: 10.1016/j.envpol.2020.114600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 06/12/2023]
Abstract
Ammonium persulfate (AP) causes occupational asthma (OA) and diesel exhaust particles (DEP) exacerbate asthma; however, the role of DEP in asthma due to chemical agents has not been assessed to date. Therefore, the present work aims to study the immunomodulatory effects of DEP in a mouse model of chemical asthma. BALB/c ByJ mice were randomly divided into four experimental groups. On days 1 and 8, mice were dermally sensitized with AP or saline. On days 15, 18 and 21, they received intranasal instillations of AP or saline. Two experimental groups received DEP on every of the three challenges. Airway hyperresponsiveness (AHR), lung mechanics, pulmonary inflammation in bronchoalveolar lavage, leukocyte numbers in total lung tissue, oxidative stress and optical projection tomography (OPT) studies were assessed. The AP-sensitized and challenged group showed asthma-like responses, such as airway hyperresponsiveness, increased levels of eosinophils and NKs and lower numbers of monocytes and CD11b-Ly6C- dendritic cells (DCs). Mice exposed to DEP alone showed increased levels of neutrophils and NKs, reduced numbers of monocytes and alveolar macrophages, and increased levels of CD11b + Ly6C- DCs. The AP sensitized and AP + DEP challenged group also showed asthma-like symptoms such as AHR, as well as increased numbers of eosinophils, neutrophils, CD11b + Ly6C- DCs and decreased levels of total and alveolar macrophages and tolerogenic DCs. Particle deposition was visualised using OPT. In the DEP group the particles were distributed relatively evenly, while in the AP + DEP group they were seen mainly in the large conducting airways. The results show that DEP exposure activates the innate immune response and, together with AP, exacerbates asthma immune hallmarks. This mouse model provides the first evidence of the capacity of DEPs to increase CD11b + Ly6C- (Th2-related) DCs. This study also demonstrates, for the first time, a differential deposition pattern of DEP in lungs depending on asthma status.
Collapse
Affiliation(s)
- Mj Cruz
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - S Sanchez-Díez
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ojanguren I
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Romero-Mesones
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanoirbeek J
- Centre of Environment and Health, KU Leuven, Leuven, Belgium
| | - Vande Velde G
- Department of Imaging and Pathology, Biomedical MRI, KU Leuven. Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Muñoz X
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Yang Q, Tang L, Shen M, Wang Y, Wei Y, Jeyalatha V, Chen P, Dong F, Wang G, Wu S, Liu Z, Li C. Effects of diesel exhaust particles on the condition of mouse ocular surface. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:585-593. [PMID: 30077156 DOI: 10.1016/j.ecoenv.2018.07.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
In order to evaluate the effects of diesel exhaust particles (DEP) on the ocular surface, different concentrations (100 and 1000 μg/ml) of DEP eye drops were administered on the mouse ocular surface for a period of 28 days. After DEP treatment, the corneal epithelial permeability to Oregon Green Dextran was studied, which increased proportionally with time. Also, the number of corneal epithelial cell layers significantly increased, which was accompanied with a high Ki67 expression. On the other hand, the number of goblet cells in the conjunctival fornix were reduced, and apoptotic cells were detected in the corneal and conjunctival epithelium by TUNEL assay in the DEP treated group, along with increased Caspase 3/8 expression. Furthermore, the number of CD4 positive cells significantly increased in the conjunctiva, while NF-κB p65 (phospho S536) expression was elevated in the cornea and also the conjunctiva. Our data revealed that the topical administration of DEP on the ocular surface in mouse disrupted the organized structure of the ocular surface and induced an inflammation of the cornea and conjunctiva.
Collapse
Affiliation(s)
- Qichen Yang
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China
| | - Liying Tang
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China
| | - Mei Shen
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China
| | - Yanzi Wang
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China
| | - Ya Wei
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Vimalin Jeyalatha
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China
| | - Pei Chen
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China
| | - Fei Dong
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China
| | - Guoliang Wang
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China
| | - Shuiping Wu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zuguo Liu
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| |
Collapse
|
7
|
Causation by Diesel Exhaust Particles of Endothelial Dysfunctions in Cytotoxicity, Pro-inflammation, Permeability, and Apoptosis Induced by ROS Generation. Cardiovasc Toxicol 2018; 17:384-392. [PMID: 26965709 DOI: 10.1007/s12012-016-9364-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Epidemiological studies suggest that an increase of diesel exhaust particles (DEP) in ambient air corresponds to an increase in hospital-recorded myocardial infarctions within 48 h after exposure. Among the many theories to explain this data are endothelial dysfunction and translocation of DEP into vasculature. The mechanisms for such DEP-induced vascular permeability remain unknown. One of the major mechanisms underlying the effects of DEP is suggested to be oxidative stress. Experiments have shown that DEP induce the generation of reactive oxygen species (ROS), such as superoxide anion and H2O2 in the HUVEC tube cells. Transcription factor Nrf2 is translocated to the cell nucleus, where it activates transcription of the antioxidative enzyme HO-1 and sequentially induces the release of vascular permeability factor VEGF-A. Furthermore, a recent study shows that DEP-induced intracellular ROS may cause the release of pro-inflammatory TNF-α and IL-6, which may induce endothelial permeability as well by promoting VEGF-A secretion independently of HO-1 activation. These results demonstrated that the adherens junction molecule, VE-cadherin, becomes redistributed from the membrane at cell-cell borders to the cytoplasm in response to DEP, separating the plasma membranes of adjacent cells. DEP were occasionally found in endothelial cell cytoplasm and in tube lumen. In addition, the induced ROS is cytotoxic to the endothelial tube-like HUVEC. Acute DEP exposure stimulates ATP depletion, followed by depolarization of their actin cytoskeleton, which sequentially inhibits PI3K/Akt activity and induces endothelial apoptosis. Nevertheless, high-dose DEP augments tube cell apoptosis up to 70 % but disrupts the p53 negative regulator Mdm2. In summary, exposure to DEP affects parameters influencing vasculature permeability and viability, i.e., oxidative stress and its upregulated antioxidative and pro-inflammatory responses, which sequentially induce vascular permeability factor, VEGF-A release and disrupt cell-cell junction integrity. While exposure to a low dose of DEP actin triggers cytoskeleton depolarization, reduces PI3K/Akt activity, and induces a p53/Mdm2 feedback loop, a high dose causes apoptosis by depleting Mdm2. Addition of ROS scavenger N-acetyl cysteine suppresses DEP-induced oxidative stress efficiently and reduces subsequent damages by increasing endogenous glutathione.
Collapse
|
8
|
Chao MW, Yang CH, Lin PT, Yang YH, Chuang YC, Chung MC, Tseng CY. Exposure to PM 2.5 causes genetic changes in fetal rat cerebral cortex and hippocampus. ENVIRONMENTAL TOXICOLOGY 2017; 32:1412-1425. [PMID: 27539004 DOI: 10.1002/tox.22335] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 05/06/2023]
Abstract
PM2.5 travels along the respiratory tract and enters systemic blood circulation. Studies have shown that PM2.5 increases the incidence of various diseases not only in adults but also in newborn infants. It causes chronic inflammation in pregnant women and retards fetal development. In this study, pregnant rats were exposed to PM2.5 for extended periods of time and it was found that PM2.5 exposure increased immune cells in mother rats. In addition, cytokines and free radicals rapidly accumulated in the amniotic fluid and indirectly affected the fetuses. The authors collected cerebral cortex and hippocampus samples at E18 and analyzed changes of miRNA levels. Expression levels of cortical miR-6315, miR-3588, and miR-466b-5p were upregulated, and positively correlated with the genes Pkn2 (astrocyte migration), Gorab (neuritogenesis), and Mobp (allergic encephalomyelitis). In contrast, PM2.5 decreased expression of miR-338-5p and let-7e-5p, both related to mental development. Further, PM2.5 exposure increased miR-3560 and let-7b-5p in the hippocampus, two proteins that regulate genes Oxct1 and Lin28b that control ketogenesis and glycosylation, and neural cell differentiation, respectively. miR-99b-5p, miR-92b-5p, and miR-99a-5p were decreased, leading to reduced expression of Kbtbd8 and Adam11 which reduced cell mitosis, migration, and differentiation, and inhibited learning abilities and motor coordination of the fetus. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1412-1425, 2017.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology College of Science, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
- Center for Nanotechnology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| | - Chin-Hua Yang
- Department of Diagnostic Radiology, Taoyuan General Hospital, Taoyaun, 310, Taiwan
- Departmewnt of Biomedical Engineering and Environmental Science, National Tsing Hua University, East District, Hsinchu 300, Taiwan
| | - Po-Ting Lin
- Department of Mechanical Engineering, College of Engineering, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| | - Yu-Hsiu Yang
- Department of Biomedical Engineering College of Engineering, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| | - Yu-Chen Chuang
- Department of Biomedical Engineering College of Engineering, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| | - Meng-Chi Chung
- Department of Bioscience Technology College of Science, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| | - Chia-Yi Tseng
- Center for Nanotechnology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
- Department of Biomedical Engineering College of Engineering, Chung Yuan Christian University, Zhongli district, Taoyaun, 320, Taiwan
| |
Collapse
|
9
|
Manzetti S, Andersen O. Biochemical and physiological effects from exhaust emissions. A review of the relevant literature. ACTA ACUST UNITED AC 2016; 23:285-293. [PMID: 27793419 DOI: 10.1016/j.pathophys.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/20/2016] [Indexed: 01/05/2023]
Abstract
Exhaust emissions are to date ranked among the most frequent causes of premature deaths worldwide. The combustion of fuels such as diesel, gasoline, and bio-blends provokes a series of pathophysiological responses in exposed subjects, which are associated with biochemical and immunological triggering. It is critical to understand these mechanisms, which are directly related to the levels of aerosol, liquid and gaseous components in fuel exhaust (e.g. nanoparticles, particulate matter, volatile compounds), so to cast attention on their toxicity and gradually minimize their use. This review reports findings in the recent literature concerning the biochemical and cellular pathways triggered during intoxication by exhaust emissions, and links these findings to pathophysiological responses such as inflammation and vasoconstriction. This study provides critical in vitro and in vivo data for the reduction of emissions in urban centers, with an emphasis on the prevention of exposure of groups such as children, the elderly, and other affected groups, and shows how the exposure to exhaust emissions induces mechanisms of pathogenesis related to cardiopulmonary pathologies and long-term diseases such as asthma, allergies, and cancer. This review summarizes the cellular and physiological responses of humans to exhaust emissions in a comprehensive fashion, and is important for legislative developments in fuel politics.
Collapse
Affiliation(s)
| | - Otto Andersen
- Vestlandsforskning, Fosshaugane Campus, 6851 Sogndal, Norway.
| |
Collapse
|
10
|
Tseng CY, Wang JS, Chang YJ, Chang JF, Chao MW. Exposure to High-Dose Diesel Exhaust Particles Induces Intracellular Oxidative Stress and Causes Endothelial Apoptosis in Cultured In Vitro Capillary Tube Cells. Cardiovasc Toxicol 2016; 15:345-54. [PMID: 25488805 DOI: 10.1007/s12012-014-9302-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Previous studies suggest a direct correlation between exposure to diesel exhaust particles (DEP) and the onset of vascular permeability, presumably through the disruption of the adherens junctions. This would lead to deleterious effects on vasculature, such as acute myocardial infarction and atherosclerosis. Although the mechanism remains unclear, we demonstrate DEP-induced mitochondrial reactive oxygen species generation, which may be a central cause of the above vascular disorders. In vitro capillary-like HUVEC tube cells are used in this study and show that acute DEP exposure stimulates ATP depletion, followed by depolarization of their actin cytoskeleton, which sequentially inhibits PI3K/Akt activity and induces endothelial apoptosis. These events are accompanied by induction of p53/Mdm2 feedback regulation at 10 µg/mL DEP and produce 20 % cell apoptosis. Nevertheless, 100 µg/mL DEP augments tube cell apoptosis up to 70 % but disrupts the p53 negative regulator Mdm2. Addition of N-acetylcysteine provides substantial protection against the cytotoxic effects of DEP. In summary, exposure to a low dose of DEP actin triggers cytoskeleton depolarization, reduces PI3K/Akt activity, and induces a p53/Mdm2 feedback loop, and a high dose causes apoptosis by depleting Mdm2.
Collapse
Affiliation(s)
- Chia-Yi Tseng
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chungli City, 32023, Taoyuan, Taiwan
| | - Jhih-Syuan Wang
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, 200 Chung Pei Road, Chungli City, 32023, Taoyuan, Taiwan
| | - Yu-Jung Chang
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, 200 Chung Pei Road, Chungli City, 32023, Taoyuan, Taiwan
| | - Jing-Fen Chang
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, 200 Chung Pei Road, Chungli City, 32023, Taoyuan, Taiwan
| | - Ming-Wei Chao
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, 200 Chung Pei Road, Chungli City, 32023, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Wages PA, Cheng WY, Gibbs-Flournoy E, Samet JM. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress. Biochim Biophys Acta Gen Subj 2016; 1860:2802-15. [PMID: 27208426 DOI: 10.1016/j.bbagen.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. SCOPE OF REVIEW The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. MAJOR CONCLUSIONS Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. GENERAL SIGNIFICANCE Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, NC, USA
| | - Wan-Yun Cheng
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - Eugene Gibbs-Flournoy
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
Tseng CY, Chung MC, Wang JS, Chang YJ, Chang JF, Lin CH, Hseu RS, Chao MW. PotentIn VitroProtection Against PM2.5-Caused ROS Generation and Vascular Permeability by Long-Term Pretreatment withGanoderma tsugae. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:355-76. [DOI: 10.1142/s0192415x16500208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epidemiological studies show increased particulate matter (PM[Formula: see text]) particles in ambient air are correlated with increased myocardial infarctions. Given the close association of capillaries and alveoli, the dysfunction is caused when inhaled PM[Formula: see text] particles come in close proximity to capillary endothelial cells. We previously suggested that the inhalation of PM[Formula: see text] diesel exhaust particles (DEP) induces oxidative stress and upregulates the Nrf2/HO-1 pathway, inducing vascular permeability factor VEGFA secretion, which results in cell-cell adherens junction disruption and PM[Formula: see text] transmigratation into circulation. Here, we minimized the level that PM[Formula: see text] traveled in the bloodstream by pre-supplementing with a traditional Chinese medicine (TCM) Ganoderma tsugae DMSO extract (GTDE) prior to PM[Formula: see text] exposure. Our results show that PM[Formula: see text] caused alterations in enzyme activities and cellular anti-oxidant balance. We found decreased glutathione levels, a reduced cellular redox ratio, increased ROS generation and cytotoxicity in the cellular fractions. The oxidative stress caused DNA damage and apoptosis, likely causing downstream molecular events that trigger vasculature permeabilization and, eventually, cardiovascular disorders. Our results show long-term GTDE treatment increased endogenous glutathione level, while PM[Formula: see text]-reduced glutathione levels and the cellular redox ratio. GTDE was protective against the genotoxic and apoptotic effects initiated by PM[Formula: see text] oxidative stress. Vascular permeability revealed that PM[Formula: see text] only accumulated on the surface of cells after GTDE treatment; no penetration was detected. After two weeks of GTDE treatment, VEGFA secretion was significantly reduced in human umbilical vein endothelial cells (HUVEC) and endothelial cell migration was blocked. Our results suggest GTDE prevents PM[Formula: see text] transmigration into the bloodstream, and the resultant dysfunction, by inhibiting oxidative stress production and endothelial permeability.
Collapse
Affiliation(s)
- Chia-Yi Tseng
- Department of Biomedical Engineering
- Department of Bioscience Technology, Chung Yuan Christian University Taoyuan City 32023, Taiwan
| | - Meng-Chi Chung
- Department of Bioscience Technology, Chung Yuan Christian University Taoyuan City 32023, Taiwan
| | - Jhih-Syuan Wang
- Department of Bioscience Technology, Chung Yuan Christian University Taoyuan City 32023, Taiwan
| | - Yu-Jung Chang
- Department of Bioscience Technology, Chung Yuan Christian University Taoyuan City 32023, Taiwan
| | - Jing-Fen Chang
- Department of Bioscience Technology, Chung Yuan Christian University Taoyuan City 32023, Taiwan
| | - Chin-Hung Lin
- Department of Bioscience Technology, Chung Yuan Christian University Taoyuan City 32023, Taiwan
| | - Ruey-Shyang Hseu
- Department of Biochemical Science and Technology, National Taiwan University, Da-an District, Taipei 10617, Taiwan
| | - Ming-Wei Chao
- Center of Nanotechnology
- Department of Bioscience Technology, Chung Yuan Christian University Taoyuan City 32023, Taiwan
| |
Collapse
|
13
|
Yang L, Ma S, Wan Y, Duan S, Ye S, Du S, Ruan X, Sheng X, Weng Q, Taya K, Xu M. In vitro effect of 4-pentylphenol and 3-methyl-4-nitrophenol on murine splenic lymphocyte populations and cytokine/granzyme production. J Immunotoxicol 2016; 13:548-56. [DOI: 10.3109/1547691x.2016.1140853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lubing Yang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| | - Sihui Ma
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| | - Yifang Wan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Shuqi Duan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Siyan Ye
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Shengjie Du
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Xinwei Ruan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Xia Sheng
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Qiang Weng
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| | - Kazuyoshi Taya
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Meiyu Xu
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
14
|
Tseng CY, Chang JF, Wang JS, Chang YJ, Gordon MK, Chao MW. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes. PLoS One 2015; 10:e0131911. [PMID: 26148005 PMCID: PMC4492618 DOI: 10.1371/journal.pone.0131911] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023] Open
Abstract
Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione.
Collapse
Affiliation(s)
- Chia-Yi Tseng
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
- Center of Nanotechnology, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
| | - Jing-Fen Chang
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
| | - Jhih-Syuan Wang
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
| | - Yu-Jung Chang
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
| | - Marion K. Gordon
- Joint program of Toxicology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ming-Wei Chao
- Center of Nanotechnology, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Jaguin M, Fardel O, Lecureur V. Exposure to diesel exhaust particle extracts (DEPe) impairs some polarization markers and functions of human macrophages through activation of AhR and Nrf2. PLoS One 2015; 10:e0116560. [PMID: 25710172 PMCID: PMC4339390 DOI: 10.1371/journal.pone.0116560] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Macrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP.
Collapse
Affiliation(s)
- Marie Jaguin
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
| | - Olivier Fardel
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Valérie Lecureur
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- * E-mail:
| |
Collapse
|
16
|
Song JJ, Kwon JY, Park MK, Seo YR. Microarray analysis of gene expression alteration in human middle ear epithelial cells induced by micro particle. Int J Pediatr Otorhinolaryngol 2013; 77:1760-4. [PMID: 24012219 DOI: 10.1016/j.ijporl.2013.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). METHODS The HMEEC was treated with PM (300 μg/ml) for 24 h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. RESULTS A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. CONCLUSIONS We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media.
Collapse
Affiliation(s)
- Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | | | | | | |
Collapse
|
17
|
Donaldson K, Duffin R, Langrish JP, Miller MR, Mills NL, Poland CA, Raftis J, Shah A, Shaw CA, Newby DE. Nanoparticles and the cardiovascular system: a critical review. Nanomedicine (Lond) 2013; 8:403-23. [PMID: 23477334 DOI: 10.2217/nnm.13.16] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles (NPs) are tiny particles with a diameter of less than 100 nm. Traffic exhaust is a major source of combustion-derived NPs (CDNPs), which represent a significant component in urban air pollution. Epidemiological, panel and controlled human chamber studies clearly demonstrate that exposure to CDNPs is associated with multiple adverse cardiovascular effects in both healthy individuals and those with pre-existing cardiovascular disease. NPs are also manufactured from a large range of materials for industrial use in a vast array of products including for use as novel imaging agents for medical use. There is currently little information available on the impacts of manufactured NPs in humans, but experimental studies demonstrate similarities to the detrimental cardiovascular actions of CDNPs. This review describes the evidence for these cardiovascular effects and attempts to resolve the paradox between the adverse effects of the unintentional exposure of CDNPs and the intentional delivery of manufactured NPs for medical purposes.
Collapse
Affiliation(s)
- Ken Donaldson
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sanguinarine inhibits vascular endothelial growth factor release by generation of reactive oxygen species in MCF-7 human mammary adenocarcinoma cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:517698. [PMID: 23762849 PMCID: PMC3673330 DOI: 10.1155/2013/517698] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/29/2013] [Accepted: 04/12/2013] [Indexed: 12/14/2022]
Abstract
The inhibitory action and the possible mechanism of anticancer compound Sanguinarine (SAN) on vascular endothelial growth factor (VEGF) in human mammary adenocarcinoma cells MCF-7 were evaluated in this study. We exposed MCF-7 to SAN for 24 h, then cell viability was assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Human VEGF was measured using a paired antibody quantitative ELISA kit, relative expression of VEGF mRNA was calculated using the real-time PCR studies, and the effect of SAN on the reactive oxygen species (ROS) level was detected by the flow cytometer. Treatment with SAN remarkably inhibited growth of MCF-7 cells and induced cell apoptosis. We found that VEGF release was stimulated by subtoxic concentrations of SAN and inhibited by high dose of SAN, SAN-evoked VEGF release was mimicked by low concentration of H2O2, and SAN-regulated VEGF inhibition was accompanied by increasing of ROS; these changes were abolished by antioxidant. High concentration of SAN inhibited VEGF mRNA expression in MCF-7 cultures, suggesting an effect at transcriptional level, and was also abolished by antioxidant. The present findings indicated that the regulation of VEGF expression and release from MCF-7 cells were possibly through reactive oxygen species evoked by SAN.
Collapse
|