1
|
Liu C, Zhang A. p53-Mediated Mitochondrial Translocation of EI24 Triggered by ER Stress Plays an Important Role in Arsenic-Induced Liver Damage via Activating Mitochondrial Apoptotic Pathway. Biol Trace Elem Res 2024; 202:3967-3979. [PMID: 38017236 DOI: 10.1007/s12011-023-03967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Chronic arsenic poisoning is a public health problem worldwide. In addition to skin lesions, the detrimental effect of arsenic poisoning on liver damage is one of the major issues. Our previous studies demonstrated that endoplasmic reticulum (ER) stress and p53 were associated with arsenic-induced liver damage. Literature has shown that EI24 is involved in hepatocyte hypertrophy; however, the underlying role and mechanism in arsenic-induced liver damage have not been fully elucidated. In this study, we explored the role of ER stress, p53, and EI24 as well as the regulatory relationship in arsenic poisoning populations and L-02 cells treated with distinct concentration NaAsO2 (2.5, 5, 10, and 20 μM). Results showed that as with arsenic dose increment, expression levels of ER stress key proteins GRP78, ATF4, and CHOP were significantly enhanced. Additionally, p53 expression in nucleus, p53 phosphorylation at Ser15 and Ser1392, and p53 acetylation at lys382 were significantly increased in NaAsO2-treated L-02 cells. ER stress inhibitor 4-phenylbutyric acid (4-PBA) decreased the expression of p53 phosphorylation at Ser 392, p53 acetylation at lys382, and p53 expression in nucleus. Additionally, in 5 μM NaAsO2 condition, p53 inhibitor pifithrin-α (PFT-α) aggravated 5 μM NaAsO2-induced GRP78, ATF4, and CHOP expressions, cell apoptosis, and protein-SH consumption. But in 20 μM NaAsO2 condition, PFT-α attenuated NaAsO2-induced cell apoptosis. Further results showed that 20 μM NaAsO2 facilitated translocation of EI24 from ER to mitochondrion and interaction with VDAC2, leading to activate mitochondrial apoptotic pathway, but not observed in the 5-μM NaAsO2 group. Moreover, PFT-α and 4-PBA inhibited 20 μM NaAsO2-induced EI24 expression in mitochondrion. Collectively, our results indicated that arsenic induced p53 activation via ER stress, under relatively low NaAsO2 concentration, NaAsO2-triggered p53 activation protected cells from apoptosis by alleviating ER stress. Another finding was that under relatively high NaAsO2 concentration, NaAsO2-activated p53 facilitated EI24 mitochondrial translocation and caused mitochondrial permeability increase, which represented a switch of p53 from a benefit role to pro-apoptosis function in NaAsO2-treated cells. The study contributed to in-depth understanding the mechanism of arsenic-induced liver damage and providing potential clues for following study.
Collapse
Affiliation(s)
- Chunyan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
2
|
Yang Q, Yan R, Zhang J, Zhang T, Kong Q, Zhang X, Xia H, Ye A, Qiao X, Kato K, Chen C, An Y. Reductive stress induced by NRF2/G6PD through glucose metabolic reprogramming promotes malignant transformation in Arsenite-exposed human keratinocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165207. [PMID: 37391132 DOI: 10.1016/j.scitotenv.2023.165207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Our previous research found that the nuclear factor-E2-related factor 2 (NRF2) protein was sustained activated in malignant transformation of human keratinocyte (HaCaT cells) caused by NaAsO2, but the role of NRF2 in it remains unknown. In this study, malignant transformation of HaCaT cells and labeled HaCaT cells used to detect mitochondrial glutathione levels (Mito-Grx1-roGFP2 HaCaT cells) were induced by 1.0 μM NaAsO2. Redox levels were measured at passages 0, early stage (passages 1, 7, 14), later stage (passages 21, 28 and 35) of arsenite-treated HaCaT cells. Oxidative stress levels increased at early stage. The NRF2 pathway was sustained activated. Cells and mitochondrial reductive stress levels (GSH/GSSG and NADPH/NADP+) increased. The mitochondrial GSH/GSSG levels of Mito-Grx1-roGFP2 HaCaT cells also increased. The indicators of glucose metabolism glucose-6-phosphate, lactate and the glucose-6-phosphate dehydrogenase (G6PD) levels increased, however Acetyl-CoA level decreased. Expression levels of glucose metabolic enzymes increased. After transfection with NRF2 siRNA, the indicators of glucose metabolism were reversed. After transfection with NRF2 or G6PD siRNA, cells and mitochondrial reductive stress levels decreased and the malignant phenotype was reversed. In conclusion, oxidative stress occurred in the early stage and the NRF2 was sustained high expression. In the later stage, increased NRF2/G6PD through glucose metabolic reprogramming induced reductive stress, thereby leading to malignant transformation.
Collapse
Affiliation(s)
- Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Ting Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Qi Kong
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Chang Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Li S, Pei L, Zhou Q, Fu Z, Zhang L, Liu P, Yan N, Xi S. SLC1A5 regulates cell proliferation and self-renewal through β-catenin pathway mediated by redox signaling in arsenic-treated uroepithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115204. [PMID: 37393816 DOI: 10.1016/j.ecoenv.2023.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Arsenic exposure increases the risk of bladder cancer in humans, but its underlying mechanisms remain elusive. The alanine, serine, cysteine-preferring transporter 2 (ASCT2, SLC1A5) is frequently overexpressed in cancer cells. The aim of this study was to evaluate the effects of arsenic on SLC1A5, and to determine the role of SLC1A5 in the proliferation and self-renewal of uroepithelial cells. F344 rats were exposed to 87 mg/L NaAsO2 or 200 mg/L DMAV for 12 weeks. The SV-40 immortalized human uroepithelial (SV-HUC-1) cells were cultured in medium containing 0.5 μM NaAsO2 for 40 weeks. Arsenic increased the expression levels of SLC1A5 and β-catenin both in vivo and in vitro. SLC1A5 promoted cell proliferation and self-renewal by activating β-catenin, which in turn was dependent on maintaining GSH/ROS homeostasis. Our results suggest that SLC1A5 is a potential therapeutic target for arsenic-induced proliferation and self-renewal of uroepithelial cells.
Collapse
Affiliation(s)
- Sihao Li
- Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
| | - Liang Pei
- Department of Pediatric, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qing Zhou
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Zhushan Fu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Lei Zhang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Pinya Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Shuhua Xi
- Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, China; School of Medical Applied Technology, Shenyang Medical College, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Sun M, Cheng H, Yu T, Tan J, Li M, Chen Q, Gu Y, Jiang C, Li S, He Y, Wen W. Involvement of a AS3MT/c-Fos/p53 signaling axis in arsenic-induced tumor in human lung cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:615-627. [PMID: 36399430 DOI: 10.1002/tox.23708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Arsenite methyltransferase (AS3MT) is an enzyme that catalyzes the dimethylation of arsenite (+3 oxidation state). At present, the studies on arsenic carcinogenicity mainly focus on studying the polymorphisms of AS3MT and measuring their catalytic activities. We recently showed that AS3MT was overexpressed in lung cancer patients who had not been exposed to arsenic. However, little is known about the molecular mechanisms of AS3MT in arsenite-induced tumorigenesis. In this study, we showed that AS3MT protein expression was higher in the arsenic-exposed population compared to the unexposed population. AS3MT was also overexpressed in human lung adenocarcinoma (A549) and human bronchial epithelial (16HBE) cells exposed to arsenic (A549: 20-60 μmol/L; 16HBE: 2-6 μmol/L) for 48 h. Furthermore, we investigated the effects of AS3MT on cell proliferation and apoptosis using siRNA. The downregulation of AS3MT inhibited the proliferation and promoted the apoptosis of cells. Mechanistically, AS3MT was found to specifically bind to c-Fos, thereby inhibiting the binding of c-Fos to c-Jun. Additionally, the siRNA-mediated knockdown of AS3MT enhanced the phosphorylation of Ser392 in p53 by upregulating p38 MAPK expression. This led to the activation of p53 signaling and the upregulated expression of downstream targets, such as p21, Fas, PUMA, and Bax. Together, these studies revealed that the inorganic arsenic-mediated upregulation of AS3MT expression directly affected the proliferation and apoptosis of cells, leading to arsenic-induced toxicity or carcinogenicity.
Collapse
Affiliation(s)
- Mingjun Sun
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Huirong Cheng
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Tianle Yu
- Cardiovascular medicine, Weihai Central Hospital, Weihai, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ming Li
- Elderly Health Management Center, Haida Hospital, Weihai, China
| | - Qian Chen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Yun Gu
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Chenglan Jiang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Shuting Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Weihua Wen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
5
|
Li X, Chen S, Wang X, Zhang R, Yang J, Xu H, He W, Lai M, Wu S, Nan A. The pivotal regulatory factor circBRWD1 inhibits arsenic exposure-induced lung cancer occurrence by binding mRNA and regulating its stability. Mol Ther Oncolytics 2022; 26:399-412. [PMID: 36159776 PMCID: PMC9463561 DOI: 10.1016/j.omto.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Multiple studies have indicated that circular RNAs (circRNAs) play a regulatory role in different stages of tumors by interacting with various molecules. With continuous in-depth research on the biological functions of circRNAs, increasing evidence has shown that circRNAs play important roles in carcinogenesis caused by environmental pollutants. However, the function and mechanism of circRNAs in arsenic exposure-induced lung cancer occurrence have not been reported. In this study, RNA sequencing and qPCR assays revealed that the expression of circBRWD1 was decreased in BEAS-2B-As cells and multiple lung cancer cell lines. Silencing circBRWD1 promoted cell viability and proliferation, inhibited cell apoptosis, and accelerated the G0/G1 phase transition in BEAS-2B-As cells; however, these functions were abrogated by circBRWD1 overexpression. Mechanistically, under arsenic exposure, expression of decreased circBRWD1 led to enhanced stability of the mRNA to which it directly binds (c-JUN, c-MYC, and CDK6 mRNA), increasing its expression. This mechanism promotes the malignant transformation of lung cells and ultimately leads to lung cancer. Our findings thus reveal the molecular mechanism of arsenic carcinogenesis.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Sixian Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruirui Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Jialei Yang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Haotian Xu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Wanting He
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Mingshuang Lai
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shuilian Wu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Aruo Nan
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
6
|
Li S, Zhou Q, Liu W, Fu Z, Zhao H, Xi S. Targeting SLC1A5 blocks cell proliferation through inhibition of mTORC1 in arsenite-treated human uroepithelial cells. Toxicol Lett 2021; 345:1-11. [PMID: 33781819 DOI: 10.1016/j.toxlet.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Arsenic is an environmental contaminant, which is widely distributed in soil, air, and water. There is sufficient evidence to indicate that arsenic increases the risk of bladder cancer in humans. However, its underlying mechanisms remain elusive. Glutamine (Gln) has multiple functions that promote carcinogenesis. Indeed, Gln transporters on cancer cells surface are often upregulated. Elevated expression levels of Alanine, serine, cysteine-preferring transporter 2 (ASCT2; SLC1A5) have been reported in many types of human tumors. This study characterized the role of SLC1A5 in cell proliferation in arsenite-treated cells. In short-term experiments, SV-40 immortalized human uroepithelial (SV-HUC-1) cells were treated with Sodium arsenite (NaAsO2) (0, 0.5, 1, 2, 4, 8 μM) for 24 h. In long-term experiments, SV-HUC-1 cells were exposed to 0.5 μM NaAsO2 for 40 weeks. In both short-term and long-term experiments, arsenite increased expression of SLC1A5 by 1.89-fold and 2.25-fold, respectively. Arsenite increased Gln consumption of SV-HUC-1 cells, and Gln starvation inhibited cell proliferation in long-term arsenite-treated cells. Importantly, inhibiting SLC1A5 blocked cell proliferation by downregulating mTORC1 in long-term arsenite-treated cells. Moreover, SLC1A5 regulated mTORC1 in an αKG-dependent manner. Our results suggest that SLC1A5 plays an important role in cell proliferation of arsenite-treated SV-HUC-1 cells.
Collapse
Affiliation(s)
- Sihao Li
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, China.
| | - Qing Zhou
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, China.
| | - Weijue Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, China.
| | - Zhushan Fu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, China.
| | - Hanqing Zhao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, China.
| | - Shuhua Xi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, China.
| |
Collapse
|
7
|
Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer-A Promising Signaling Network for Therapeutic Interventions. Cancers (Basel) 2021; 13:cancers13040624. [PMID: 33557398 PMCID: PMC7916307 DOI: 10.3390/cancers13040624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Tumor suppressor 53 (p53) is a multifunctional protein that regulates cell cycle, DNA repair, apoptosis and metabolic pathways. In colorectal cancer (CRC), mutations of the gene occur in 60% of patients and are associated with a more aggressive tumor phenotype and resistance to anti-cancer therapy. In addition, inhibitor of apoptosis (IAP) proteins are distinguished biomarkers overexpressed in CRC that impact on a diverse set of signaling pathways associated with the regulation of apoptosis/autophagy, cell migration, cell cycle and DNA damage response. As these mechanisms are further firmly controlled by p53, a transcriptional and post-translational regulation of IAPs by p53 is expected to occur in cancer cells. Here, we aim to review the molecular regulatory mechanisms between IAPs and p53 and discuss the therapeutic potential of targeting their interrelationship by multimodal treatment options. Abstract Despite recent advances in the treatment of colorectal cancer (CRC), patient’s individual response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an enhanced malignancy and therapy resistance. Among these markers, upregulation of members of the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53 is expected to occur in malignant cells. By this, cellular IAP1/2, X-linked IAP, Survivin, BRUCE and LIVIN expression/activity, as well as their intracellular localization is controlled by p53 in a direct or indirect manner via modulating a multitude of mechanisms. These cover, among others, transcriptional repression and the signal transducer and activator of transcription (STAT)3 pathway. In addition, p53 mutations contribute to deregulated IAP expression and resistance to therapy. This review aims at highlighting the mechanistic and clinical importance of IAP regulation by p53 in CRC and describing potential therapeutic strategies based on this interrelationship.
Collapse
|
8
|
Yang Y, Liu C, Xie T, Wang D, Chen X, Ma L, Zhang A. Role of inhibiting Chk1-p53 pathway in hepatotoxicity caused by chronic arsenic exposure from coal-burning. Hum Exp Toxicol 2021; 40:1141-1152. [PMID: 33501840 DOI: 10.1177/0960327120988880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arsenic is a naturally occurring environmental toxicant, chronic exposure to arsenic can cause multiorgan damage, except for typical skin lesions, liver damage is the main problem for health concern in population with arsenic poisoning. Abnormal apoptosis is closely related to liver-related diseases, and p53 is one of the important hallmark proteins in apoptosis progression. This study was to investigate whether arsenic poisoning-induced hepatocyte apoptosis and the underlying role of p53 signaling pathway. A rat model of arsenic poisoning was established by feeding corn powder for 90 days, which was baked with high arsenic coal, then were treated with Ginkgo biloba extract (GBE) for 45 days by gavage. The results showed that arsenic induced liver damage, increased hepatocyte apoptosis and elevated the expression level of Chk1 and the ratios of p-p53/p53 and Bax/Bcl-2 in liver tissues, which were significantly attenuated by GBE. Additionally, to further demonstrate the potential apoptosis-associated mechanism, L-02 cells were pre-incubated with p53 inhibitor pifithrin-α (PFTα), ataxia telangiectasia-mutated (ATM)/ataxia telangiectasia-mutated and Rad3-related (ATR) inhibitor (CGK733) or GBE, then treated with sodium arsenite (NaAsO2) for 24 h. The results showed that GBE, PFTα or CGK733 significantly reduced arsenic-induced Chk1 expression and the ratios of p-p53/p53 and Bax/Bcl-2. In conclusion, Chk1-p53 pathway was involved in arsenic poisoning-induced hepatotoxicity, and inhibiting of Chk1-p53 pathway ameliorated hepatocyte apoptosis caused by coal-burning arsenic poisoning. The study provides a pivotal clue for understanding of the mechanism of arsenic poisoning-induced liver damage, and possible intervention strategies.
Collapse
Affiliation(s)
- Yuan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Chunyan Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Tingting Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xiong Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Lu Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
9
|
Mao J, Yang Q, Miyazawa M, Miura M, Wang L, Xia H, Kato K, Yamanaka K, An Y. Possible differences in the mechanism of malignant transformation of HaCaT cells by arsenite and its dimethyl metabolites, particularly dimethylthioarsenics. J Trace Elem Med Biol 2020; 61:126544. [PMID: 32416464 DOI: 10.1016/j.jtemb.2020.126544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND As a confirmed human carcinogen, arsenic can cause skin cancer, lung cancer, etc. However, its carcinogenic mechanism is still unclear. In recent years, the oxidative stress hypothesis has become widely accepted. In mammals it has been found that arsenic can be converted to dimethylarsinous acid (DMAIII) and dimethylmonothioarsinic acid (DMMTAV) through a series of methylation and redox reactions. DMAIII and DMMTAV are highly toxic. METHODS Human keratinocytes (HaCaT) were exposed to different concentrations of NaAsO2 (IAsIII), DMMTAV and DMAIII for 24 h. Reactive oxygen species (hydrogen peroxide and superoxide), oxidative damage markers (8-hydroxydeoxyguanosine and malondialdehyde), and antioxidant markers (glutathione and superoxide dismutase) were measured. In addition, sulfane sulfurs were measured in HaCaT cells and a cell-free system. RESULTS In the DMMTAV and DMAIII treatment groups, the levels of hydrogen peroxide and superoxide in HaCaT cells were higher than in the IAsIII treatment groups at the same dose. Levels of 8-OHdG and MDA in the DMMTAV and DMAIII treatment groups were also higher than those in the IAsIII treatment groups at the same dose. However, in the DMMTAV and DMAIII treatment groups, the levels of GSH and SOD activity were lower than that in the IAsIII treatment groups. In DMMTAV-treated HaCaT cells, sulfane sulfurs were produced. Further, it was found that DMMTAV could react with DMDTAV to form persulfide in the cell-free system, which may explain the mechanism of the formation of sulfane sulfurs in DMMTAV-treated HaCaT cells. CONCLUSIONS DMMTAV and DMAIII more readily induce reactive oxygen species (ROS) and cause oxidative damage in HaCaT cells than inorganic arsenic. Further, the persulfide formed by the reaction of DMMTAV and DMDTAV produced from the metabolism of DMMTAV may induce a stronger reductive defense mechanism than GSH against the intracellular oxidative stress of DMMTAV. However, the cells exposed to arsenite are transformed by the continuous nuclear translocation of Nrf2 due to oxidative stress, and the persulfide from dimethylthioarsenics may promote Nrf2 by the combination with thiol groups, especially redox control key protein, Keap1, eventually cause nuclear translocation of sustained Nrf2.
Collapse
Affiliation(s)
- Jiayuan Mao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Makoto Miyazawa
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| | - Motofumi Miura
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| | - Luna Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
10
|
Qiu Y, Dai Y, Zhang C, Yang Y, Jin M, Shan W, Shen J, Lu M, Tang Z, Ju L, Wang Y, Jiao R, Xia Y, Huang G, Yang L, Li Y, Zhang J, Wong VKW, Jiang Z. Arsenic trioxide reverses the chemoresistance in hepatocellular carcinoma: a targeted intervention of 14-3-3η/NF-κB feedback loop. J Exp Clin Cancer Res 2018; 37:321. [PMID: 30572915 PMCID: PMC6302299 DOI: 10.1186/s13046-018-1005-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multi-drug resistance (MDR) is one of the main obstacles for treatment of advanced/recurrent hepatocellular carcinoma (HCC). We have previously identified arsenic trioxide (ATO) as an effective metastasis/angiogenesis inhibitor in HCC. Here, we further found that MDR-HCC cells were more sensitive to ATO. METHODS The MDR-HCC cells were used as experimental models. Biological functions were investigated using cell transfection, polymerase chain reaction, western blot, southwestern blot, immunostaining, immunoprecipitation plus atomic fluorescence spectrometry, and so on. RESULTS The MDR-HCC cells underwent high oxidative stress condition, and employed adaptive mechanisms for them to survive; while ATO abolished such mechanisms via targeting the 14-3-3η/nuclear factor kappa B (NF-κB) feedback Loop. Briefly, in MDR cells, the increase of ROS activated NF-κB signaling, which transcriptionally activated 14-3-3η. Meanwhile, the activation of NF-κB can be constitutively maintained by 14-3-3η. As a NF-κB inhibitor, ATO transcriptionally inhibited the 14-3-3η mRNA level. Meanwhile, ATO was also validated to directly bind to 14-3-3η, enhancing the degradation of 14-3-3η protein in an ubiquitination-dependent manner. Knockdown of 14-3-3η reduced the ATO-induced reversal extents of drug resistance in MDR cells. CONCLUSION 14-3-3η/NF-κB feedback loop plays an important role in maintaining the MDR phenotype in HCC. Moreover, via targeting such feedback loop, ATO could be considered as a potential molecular targeted agent for the treatment of HCC.
Collapse
Affiliation(s)
- Yongxin Qiu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Chi Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenqi Shan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jian Shen
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoyang Tang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Ju
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruonan Jiao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yunwei Xia
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guangming Huang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lihua Yang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Li
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jianping Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| |
Collapse
|
11
|
Zhou Q, Jin P, Liu J, Wang F, Xi S. HER2 and Src co-regulate proliferation, migration and transformation by downstream signaling pathways in arsenite-treated human uroepithelial cells. Metallomics 2018; 10:1141-1159. [PMID: 30066004 DOI: 10.1039/c8mt00131f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Epidemiological studies have established a strong association between arsenic exposure in drinking water and an increased incidence of bladder cancer in arseniasis-endemic areas. Increased expression of HER2 has been observed in various types of human malignancies including bladder cancer. This study investigated the role of HER2 in arsenite-induced transformation of uroepithelial cells SV-HUC-1 and the role of Src family kinases in HER2 signaling. We found that the expression HER2 and Src were increased following chronic arsenite exposure in a time-dependent fashion. Chronic arsenite exposure also led to an upregulation of proliferation factors such as cyclin D1, COX2, PCNA, VEGF, and HIF-1α. Furthermore, Ras/Raf/MAPK, PI3K/AKT, and JAK2/STAT3 signaling pathways were activated by arsenite treatment. Importantly, these changes were inhibited by HER2 inhibitors and in HER2 knocked down cells. In addition, downregulation of HER2 inhibited cell growth and migration properties of arsenite-treated cells. Inhibition of Src also inhibits activation of signaling pathways and malignant transformation of cells. And we obtained evidence of an interaction between HER2 and Src in SV-HUC-1 cell lines. These results suggest that HER2 and Src may play an important role in arsenite-induced transformation by multiple downstream signals pathways.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Gu S, Sun D, Dai H, Zhang Z. N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells. Toxicol Lett 2018; 292:1-11. [DOI: 10.1016/j.toxlet.2018.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
|
13
|
Gu S, Sun D, Li X, Zhang Z. Alterations of miRNAs and Their Potential Roles in Arsenite-Induced Transformation of Human Bronchial Epithelial Cells. Genes (Basel) 2017; 8:genes8100254. [PMID: 28972549 PMCID: PMC5664104 DOI: 10.3390/genes8100254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 01/09/2023] Open
Abstract
The alterations of micro RNAs (miRNAs) and their potential roles in arsenite-induced tumorigenesis are still poorly understood. In this study, miRNA Array was used to detect the expression level of miRNAs in human bronchial epithelial (HBE) cells that were transformed by 2.5 μM arsenite for 13 weeks. These cells exhibited a neoplastic phenotype manifested by increased levels of cellular proliferation and migration and clone formation. Subsequently, 191 dysregulated miRNAs were identified to be associated with arsenite-induced transformation by miRNA Array. Among them, six miRNAs were validated by their expression levels with quantitative real-time polymerase chain reaction (qPCR), and 17 miRNAs were further explored via their target genes as well as regulatory network. Three databases, TargetMiner, miRDB, and TarBase, were used to predict the target genes of the 17 miRNAs, and a total of 954 common genes were sorted. Results of Gene Ontology (GO) analyses showed that the 954 genes were involved in diverse terms of GO categories, such as positive regulation of macroautophagy, epithelial cell maturation, and synaptic vesicle clustering. Moreover, results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that most of these target genes were enriched in various cancer-related pathways, including non-small cell lung cancer, Wnt signaling pathway, cell cycle, and p53 signaling pathway. The miRNA-gene regulatory network, which was constructed by cytoscape software with miRNAs and their target genes, showed that miR-15b-5p, miR-106b-5p, and miR-320d were the core hubs. Collectively, our results provide new insights into miRNA-mediated mechanisms underlying arsenite-induced transformation, although more experimental verification is still needed to prove these predictions.
Collapse
Affiliation(s)
- Shiyan Gu
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu 610041, China.
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu 610041, China.
| | - Xinyang Li
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu 610041, China.
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Cui F, Zan X, Li Y, Sun W, Yang Y, Ping L. Grifola frondosa Glycoprotein GFG-3a Arrests S phase, Alters Proteome, and Induces Apoptosis in Human Gastric Cancer Cells. Nutr Cancer 2016; 68:267-79. [PMID: 27040446 DOI: 10.1080/01635581.2016.1134599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GFG-3a is a novel glycoprotein previously purified from the fermented mycelia of Grifola frondosa with novel sugar compositions and protein sequencing. The present study aims to investigate its effects on the cell cycle, differential proteins expression, and apoptosis of human gastric cancer SGC-7901 cells. Our findings revealed that GFG-3a induced the cell apoptosis and arrested cell cycle at S phase. GFG-3a treatment resulted in the differential expression of 21 proteins in SGC-7901 cells by upregulating 10 proteins including RBBP4 associated with cell cycle arrest and downregulating 11 proteins including RUVBL1, NPM, HSP90AB1, and GRP78 involved in apoptosis and stress response. qRT-PCR and Western blot analysis also suggested that GFG-3a could increase the expressions of Caspase-8/-3, p53, Bax, and Bad while decrease the expressions of Bcl2, Bcl-xl, PI3K, and Akt1. These results indicated that the stress response, p53-dependent mitochondrial-mediated, Caspase-8/-3-dependent, and PI3k/Akt pathways were involved in the GFG-3a-induced apoptosis process in SGC-7901 cells. These findings might provide a basis to prevent or treat human gastric cancer with GFG-3a and understand the tumor-inhibitory molecular mechanisms of mushroom glycoproteins.
Collapse
Affiliation(s)
- Fengjie Cui
- a School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China.,b Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production , Dexing , China
| | - Xinyi Zan
- a School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China
| | - Yunhong Li
- a School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China
| | - Wenjing Sun
- a School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China.,b Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production , Dexing , China
| | - Yan Yang
- c National Engineering Research Center of Edible Fungi, Shanghai Academy of Agricultural Sciences , Shanghai , China
| | - Lifeng Ping
- d State Key Lab Breeding Base for Quality and Safety of Agro-products, MOA Key Lab for Pesticide Residue Detection, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences , Hangzhou , China.,e School of Civil Engineering and Architecture, Zhejiang University of Science and Technology , Hangzhou , China
| |
Collapse
|
15
|
Yang X, Ye J, Yan H, Tang Z, Shen J, Zhang J, Yang L. MiR-491 attenuates cancer stem cells-like properties of hepatocellular carcinoma by inhibition of GIT-1/NF-κB-mediated EMT. Tumour Biol 2015; 37:201-9. [DOI: 10.1007/s13277-015-3687-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/17/2015] [Indexed: 01/06/2023] Open
|
16
|
Liu ZM, Tseng HY, Cheng YL, Yeh BW, Wu WJ, Huang HS. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis. Toxicol Appl Pharmacol 2015; 285:41-50. [PMID: 25791921 DOI: 10.1016/j.taap.2015.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
Abstract
Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21(WAF1/CIP1)) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1-0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5-20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (-1486 to -1479bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO.
Collapse
Affiliation(s)
- Zi-Miao Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Yu Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Ling Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Bi-Wen Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
17
|
TG-interacting factor mediates arsenic-induced malignant transformation of keratinocytes via c-Src/EGFR/AKT/FOXO3A and redox signalings. Arch Toxicol 2014; 89:2229-41. [DOI: 10.1007/s00204-014-1445-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|
18
|
Jiang F, Wang X, Liu Q, Shen J, Li Z, Li Y, Zhang J. Inhibition of TGF-β/SMAD3/NF-κB signaling by microRNA-491 is involved in arsenic trioxide-induced anti-angiogenesis in hepatocellular carcinoma cells. Toxicol Lett 2014; 231:55-61. [PMID: 25196641 DOI: 10.1016/j.toxlet.2014.08.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/29/2014] [Accepted: 08/30/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current standard practices for treatment of HCC are less than satisfactory because of metastasis and recurrence, which are primarily attributed to the angiogenesis. So, the anti-angiogenesis treatment has become the new approach for HCC therapy. In addition to treating leukemia, arsenic trioxide (As2O3) also suppresses other solid tumors, including HCC. However, the roles of As2O3 in the angiogenesis potential of HCC cells remain unclear. In our present study, As2O3 attenuated the angiogenic ability by the microRNA-491 (miR-491)-mediated inhibition of TGF-β/SMAD3/NF-κB signal pathway in MHCC97H and MHCC97L cells. Briefly, in these cells, As2O3 improved the expression of miR-491 via DNA-demethylation; miR-491, which targeted the SMAD3-3'-UTR, decreased the expression/function of SMAD3, leading to the inactivation of NF-κB/IL-6/STAT-3 signaling; knockdown of miR-491 abolished the As2O3-induced inhibitions of the TGF-β/SMAD3/NF-κB pathway, the VEGF secretion, and the angiogenesis. By understanding a novel mechanism whereby As2O3 inhibits the angiogenic potential in HCC cells, our study would help in the design of future strategies of developing As2O3 as a potential chemopreventive agent when used alone or in combination with other current anticancer drugs.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xingxing Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qinqiang Liu
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | - Jian Shen
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | - Zhong Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China.
| |
Collapse
|
19
|
Arsenic trioxide attenuates the invasion potential of human liver cancer cells through the demethylation-activated microRNA-491. Toxicol Lett 2014; 227:75-83. [PMID: 24680928 DOI: 10.1016/j.toxlet.2014.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third leading cause of cancer-related mortality worldwide. Current standard practices for treatment of HCC are less than satisfactory because of metastasis and recurrence. In addition to treating acute promyelocytic leukemia (APL), arsenic trioxide (As2O3) also suppresses other solid tumors, such as HCC. However, the effects of As2O3 on the migration/invasion potential of liver cancer cells and the molecular mechanisms underlying in remain unclear. Here we found that As2O3 attenuated the migration/invasion potential of HCC cell lines by blocking matrix metalloproteinases (MMPs) activities and inducing a mesenchymal to epithelial transition (MET). Indeed, As2O3 elevated the expression of microRNA-491 (miR-491) via demethylation. On one hand, as a target miRNA of MMP9, miR-491 decreased the MMP9 expression. On the other hand, miR-491 blocked the activation of nuclear factor κB (NF-κB), which transcriptionally inactivated MMP2 and induced a MET (as determined by the increased expression of E-cadherin and decreased expressions of snail, slug, and vimentin). Knockdown of miR-491 abolished the As2O3-induced MMPs inactivation, MET, and the migration/invasion potential of HCC cell lines. By understanding a novel mechanism how As2O3 inhibits the migration/invasion potential of liver cancer cells, our study may help to identify potential therapeutic targets for liver cancer.
Collapse
|
20
|
Hashmi MZ, Shen H, Zhu S, Yu C, Shen C. Growth, bioluminescence and shoal behavior hormetic responses to inorganic and/or organic chemicals: a review. ENVIRONMENT INTERNATIONAL 2014; 64:28-39. [PMID: 24361513 DOI: 10.1016/j.envint.2013.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
A biphasic dose response, termed hormesis, is characterized by beneficial effects of a chemical at a low dose and harmful effects at a high dose. This biphasic dose response phenomenon has the potential to strongly alter toxicology in a broad range. The present review focuses on the progress of research into hormetic responses in terms of growth (in plants, birds, algae and humans), bioluminescence, and shoal behavior as end points. The paper describes how both inorganic and organic chemicals at a low dose show stimulatory responses while at higher doses are inhibitory. The article highlights how factors such as symbiosis, density-dependent factors, time, and contrasting environmental factors (availability of nutrients, temperature, light, etc.) affect both the range and amplitude of hormetic responses. Furthermore, the possible underlying mechanisms are also discussed and we suggest that, for every end point, different hormetic mechanisms may exist. The occurrences of varying interacting receptor systems or receptor systems affecting the assessment of hormesis for each endpoint are discussed. The present review suggests that a hormetic model should be adopted for toxicological evaluations instead of the older threshold and linear non-threshold models.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hui Shen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shenhai Zhu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chunna Yu
- Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
21
|
Molecular mechanisms of exopolysaccharide from Aphanothece halaphytica (EPSAH) induced apoptosis in HeLa cells. PLoS One 2014; 9:e87223. [PMID: 24466342 PMCID: PMC3900761 DOI: 10.1371/journal.pone.0087223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/18/2013] [Indexed: 01/07/2023] Open
Abstract
The present study aims to investigate the pharmacological effect of the exopolysaccharides from Aphanothece halophytica GR02 (EPSAH) on the HeLa human cervical cancer cell line. HeLa cells were cultured in RPMI-1640-10% FBS medium containing with or without different concentrations of EPSAH. Cell viability was assessed by methylthiazol tetrazolium (MTT) assay. Cell apoptosis was elevated with Wright-Giemsa staining, AO/EB double staining, and DNA fragmentation assay. Apoptosis-associated molecules from cultured HeLa cells were quantified using Western blot analysis. Our results suggest that EPASH induces apoptosis in HeLa cells by targeting a master unfolded protein response (UPR) regulator Grp78. Grp78 further promotes the expression of CHOP and downregulates expression of survivin, which leads to activate mitochondria-mediated downstream molecules and p53-survivin pathway, resulting in caspase-3 activation and causing apoptosis. These findings provide important clues for further evaluating the potential potency of EPSAH for use in cancer therapy.
Collapse
|
22
|
Zhang Z, Lu H, Huan F, Meghan C, Yang X, Wang Y, Wang X, Wang X, Wang SL. Cytochrome P450 2A13 mediates the neoplastic transformation of human bronchial epithelial cells at a low concentration of aflatoxin B1. Int J Cancer 2013; 134:1539-48. [DOI: 10.1002/ijc.28489] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/02/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing People's Republic of China
- State Key Lab of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing People's Republic of China
| | - Huiyuan Lu
- Key Lab of Modern Toxicology of Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing People's Republic of China
- Animal, Plant and Food Inspection Center; Jiangsu Entry-Exit Inspection and Quarantine Bureau; Nanjing People's Republic of China
| | - Fei Huan
- Key Lab of Modern Toxicology of Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing People's Republic of China
| | - Cromie Meghan
- Department of Environmental Toxicology; Texas Tech University; Lubbock TX
| | - Xuejiao Yang
- Key Lab of Modern Toxicology of Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing People's Republic of China
- State Key Lab of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing People's Republic of China
| | - Yun Wang
- Key Lab of Modern Toxicology of Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing People's Republic of China
- State Key Lab of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing People's Republic of China
| | - Xichen Wang
- Key Lab of Modern Toxicology of Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing People's Republic of China
- State Key Lab of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing People's Republic of China
| | - Xinru Wang
- Key Lab of Modern Toxicology of Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing People's Republic of China
- State Key Lab of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing People's Republic of China
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing People's Republic of China
- State Key Lab of Reproductive Medicine; Institute of Toxicology; Nanjing Medical University; Nanjing People's Republic of China
| |
Collapse
|
23
|
Zhang XH, Feng R, Lv M, Jiang Q, Zhu HH, Qing YZ, Bao JL, Huang XJ, Zheng XL. Arsenic trioxide induces apoptosis in B-cell chronic lymphocytic leukemic cells through down-regulation of survivin via the p53-dependent signaling pathway. Leuk Res 2013; 37:1719-25. [PMID: 24211095 DOI: 10.1016/j.leukres.2013.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 01/21/2023]
Abstract
Arsenic trioxide (As2O3) can induce apoptosis in many tumors. However, the associated mechanisms are not clearly understood. We found that As2O3 significantly inhibited the proliferation of WSU-CLL cells and induced apoptosis in dose- and time-dependent manners. WSU-CLL cells treated with 2μM As2O3 showed survivin down-regulation and p53 up-regulation. Survivin siRNA combined with As2O3 further inhibited the proliferation of WSU-CLL cells. p53 inhibition by siRNA prevented the down-regulation of survivin by As2O3 and prevented the As2O3-induced cytotoxicity of WSU-CLL cells. These results suggest that As2O3 may be of therapeutic value for chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xu Y, Li Y, Li H, Pang Y, Zhao Y, Jiang R, Shen L, Zhou J, Wang X, Liu Q. The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells. Toxicol Appl Pharmacol 2013. [DOI: 10.1016/j.taap.2012.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Li F. Discovery of survivin inhibitors and beyond: FL118 as a proof of concept. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:217-52. [PMID: 23890383 DOI: 10.1016/b978-0-12-407695-2.00005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Survivin, a novel antiapoptotic protein molecule, plays a central role in cancer cell survival/proliferation networks and has therefore become a therapeutic target for cancer drug discovery efforts. There are two strategies for discovering survivin inhibitors. One is based on survivin interactions within the cell and the other strategy is based on blocking survivin expression. Survivin inhibitors developed by the first strategy would disrupt a particular survivin function. These survivin inhibitors could also be useful tools for delineating the mechanism of action of survivin. The second strategy may use a reporter system of the survivin gene to screen drug libraries. To date, two molecules, YM155 and FL118, have been identified using this strategy. These two examples provide a proof of concept that screens for inhibitors of survivin expression using survivin gene reporter assays as surrogate markers will uncover versatile small molecules that not only inhibit survivin but also inhibit other essential cancer survival/proliferation-associated targets and/or signaling pathways. This review provides an overview of current information in the area relevant to survivin inhibitors that may facilitate future studies.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA.
| |
Collapse
|