1
|
Rudzanova B, Thon V, Vespalcova H, Martyniuk CJ, Piler P, Zvonar M, Klanova J, Blaha L, Adamovsky O. Gene expression patterns associated with PFOA exposure in Czech young men and women. ENVIRONMENT INTERNATIONAL 2024; 190:108879. [PMID: 39008919 DOI: 10.1016/j.envint.2024.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Perfluorooctanoic acid (PFOA), a member of per- and polyfluoroalkyl substances (PFASs), has been widely used in manufacturing for decades. Currently, PFOA is strictly regulated, but due to its high stability and persistence, it is detected in both environmental as well as in human matrices. To elucidate mechanisms of PFOA toxicity in humans, we determined the genome-wide transcriptomic changes of peripheral blood mononuclear cells (PBMC) responding to PFOA exposure in a sex-stratified analysis. This work employed samples from 145 female and 143 male participants of the CELSPAC: YA study to characterize PFOA-associated transcripts in a broader context using computational analysis. PFOA-associated gene expression differed significantly between men and women, as only 2 % of mapped genes were expressed in both sexes. Disease-specific enrichment analysis revealed cancer and immune-related disease terms as those most enriched in male and female populations. Patterns of enriched terms within the gene set enrichment analysis indicated three main targets of PFOA toxicity: i) lipid metabolism for women; ii) cell cycle regulation for men; and iii) immune system response for both sexes. In summary, our genome-wide transcriptomics analysis described sex-specific differences in PFOA-associated gene expression and provided evidence about biological pathways underlying PFOA toxicity in humans.
Collapse
Affiliation(s)
- Barbora Rudzanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Hana Vespalcova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Martin Zvonar
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic; Department of Kinesiology, Faculty of Sports Studies, Kamenice 753/5, Brno, Czech Republic
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.
| |
Collapse
|
2
|
Navarrete-Meneses MDP, Salas-Labadía C, Juárez-Velázquez MDR, Moreno-Lorenzana D, Gómez-Chávez F, Olaya-Vargas A, Pérez-Vera P. Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci 2023; 24:6259. [PMID: 37047231 PMCID: PMC10094043 DOI: 10.3390/ijms24076259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
The evidence supporting the biological plausibility of the association of permethrin and malathion with hematological cancer is limited and contradictory; thus, further studies are needed. This study aimed to investigate whether in vitro exposure to 0.1 μM permethrin and malathion at 0, 24, 48 and 72 h after cell culture initiation induced changes in the gene expression and DNA methylation in mononuclear cells from bone marrow and peripheral blood (BMMCs, PBMCs). Both pesticides induced several gene expression modifications in both tissues. Through gene ontology analysis, we found that permethrin deregulates ion channels in PBMCs and BMMCs and that malathion alters genes coding proteins with nucleic acid binding capacity, which was also observed in PBMCs exposed to permethrin. Additionally, we found that both insecticides deregulate genes coding proteins with chemotaxis functions, ion channels, and cytokines. Several genes deregulated in this study are potentially associated with cancer onset and development, and some of them have been reported to be deregulated in hematological cancer. We found that permethrin does not induce DNA hypermethylation but can induce hypomethylation, and that malathion generated both types of events. Our results suggest that these pesticides have the potential to modify gene expression through changes in promoter DNA methylation and potentially through other mechanisms that should be investigated.
Collapse
Affiliation(s)
- María del Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - Consuelo Salas-Labadía
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - María del Rocío Juárez-Velázquez
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - Dafné Moreno-Lorenzana
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - Fernando Gómez-Chávez
- Maestría y Doctorado en Ciencia y Tecnología de Vacunas y Bioterapéuticos, Doctorado en Ciencias en Biotecnología, Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Instituto Politécnico Nacional-ENMyH, Mexico City 07738, Mexico;
| | - Alberto Olaya-Vargas
- Unidad de Trasplante de Células Hematopoyeticas y Terapia Celular, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Patricia Pérez-Vera
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| |
Collapse
|
3
|
Reynolds LJ, Dickens BJ, Green BB, Marsit CJ, Pearson KJ. Using neonatal skin to study the developmental programming of aging. Exp Gerontol 2016; 94:93-98. [PMID: 28034763 DOI: 10.1016/j.exger.2016.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
Abstract
Numerous studies have examined how both negative and positive maternal exposures (environmental contaminants, nutrition, exercise, etc.) impact offspring risk for age-associated diseases such as obesity, type 2 diabetes, hypertension, and others. The purpose of this study was to introduce the foreskin as a novel model to examine developmental programming in human neonates, particularly in regard to adipogenesis and insulin receptor signaling, major contributors to age-associated diseases such as obesity and diabetes. Neonatal foreskin was collected following circumcision and primary dermal fibroblasts were isolated to perform adipocyte differentiation and insulin stimulation experiments. Human neonatal foreskin primary fibroblasts take up lipid when stimulated with a differentiation cocktail and demonstrate insulin signaling when stimulated with insulin. Thus, we propose that foreskin tissue can be used to study developmental exposures and programming that occur in the neonate as it relates to age-associated diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Leryn J Reynolds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Brett J Dickens
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Benjamin B Green
- Department of Epidemiology and of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
4
|
La Rocca C, Tait S, Guerranti C, Busani L, Ciardo F, Bergamasco B, Perra G, Mancini FR, Marci R, Bordi G, Caserta D, Focardi S, Moscarini M, Mantovani A. Exposure to Endocrine Disruptors and Nuclear Receptors Gene Expression in Infertile and Fertile Men from Italian Areas with Different Environmental Features. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:12426-45. [PMID: 26445054 PMCID: PMC4626977 DOI: 10.3390/ijerph121012426] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022]
Abstract
Internal levels of selected endocrine disruptors (EDs) (i.e., perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), di-2-ethylhexyl-phthalate (DEHP), mono-(2-ethylhexyl)-phthalate (MEHP), and bisphenol A (BPA)) were analyzed in blood/serum of infertile and fertile men from metropolitan, urban and rural Italian areas. PFOS and PFOA levels were also evaluated in seminal plasma. In peripheral blood mononuclear cells (PBMCs) of same subjects, gene expression levels of a panel of nuclear receptors (NRs), namely estrogen receptor α (ERα) estrogen receptor β (ERβ), androgen receptor (AR), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptor γ (PPARγ) and pregnane X receptor (PXR) were also assessed. Infertile men from the metropolitan area had significantly higher levels of BPA and gene expression of all NRs, except PPARγ, compared to subjects from other areas. Subjects from urban areas had significantly higher levels of MEHP, whereas subjects from rural area had higher levels of PFOA in both blood and seminal plasma. Interestingly, ERα, ERβ, AR, PXR and AhR expression is directly correlated with BPA and inversely correlated with PFOA serum levels. Our study indicates the relevance of the living environment when investigating the exposure to specific EDs. Moreover, the NRs panel in PBMCs demonstrated to be a potential biomarker of effect to assess the EDs impact on reproductive health.
Collapse
Affiliation(s)
- Cinzia La Rocca
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Sabrina Tait
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Cristiana Guerranti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy.
- Bioscience Research Center, Orbetello (GR) 58015, Italy.
| | - Luca Busani
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Francesca Ciardo
- Department of Obstetric and Gynecological Sciences and Urological Sciences, University of Roma Sapienza, S. Andrea Hospital, Roma 00189, Italy.
| | - Bruno Bergamasco
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Guido Perra
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy.
| | - Francesca Romana Mancini
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Roberto Marci
- Department of Biomedical Sciences and Advanced Therapies, Section of Obstetrics and Gynaecology, University of Ferrara, Ferrara 44124, Italy.
| | - Giulia Bordi
- Department of Obstetric and Gynecological Sciences and Urological Sciences, University of Roma Sapienza, S. Andrea Hospital, Roma 00189, Italy.
| | - Donatella Caserta
- Department of Obstetric and Gynecological Sciences and Urological Sciences, University of Roma Sapienza, S. Andrea Hospital, Roma 00189, Italy.
| | - Silvano Focardi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy.
| | - Massimo Moscarini
- Department of Obstetric and Gynecological Sciences and Urological Sciences, University of Roma Sapienza, S. Andrea Hospital, Roma 00189, Italy.
| | - Alberto Mantovani
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| |
Collapse
|
5
|
La Rocca C, Tait S, Guerranti C, Busani L, Ciardo F, Bergamasco B, Stecca L, Perra G, Mancini FR, Marci R, Bordi G, Caserta D, Focardi S, Moscarini M, Mantovani A. Exposure to endocrine disrupters and nuclear receptor gene expression in infertile and fertile women from different Italian areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:10146-64. [PMID: 25268510 PMCID: PMC4210972 DOI: 10.3390/ijerph111010146] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022]
Abstract
Within the PREVIENI project, infertile and fertile women were enrolled from metropolitan, urban and rural Italian areas. Blood/serum levels of several endocrine disrupters (EDs) (perfluorooctane sulfonate, PFOS; perfluorooctanoic acid, PFOA; di-2-ethylhexyl-phthalate, DEHP; mono-(2-ethylhexyl)-phthalate, MEHP; bisphenol A, BPA) were evaluated concurrently with nuclear receptors (NRs) gene expression levels (ERa, ERb, AR, AhR, PPARg, PXR) in peripheral blood mononuclear cells (PBMCs). Infertile women from the metropolitan area displayed significantly higher levels of: BPA compared to fertile women (14.9 vs. 0.5 ng/mL serum); BPA and MEHP compared to infertile women from urban and rural areas; enhanced expression levels of NRs, except PPARg. Infertile women from urban and rural areas had PFOA levels significantly higher than those from metropolitan areas. Our study indicates the relevance of the living environment when investigating the exposure to EDs and the modulation of the NR panel in PBMC as a suitable biomarker of the effect, to assess the EDs impact on reproductive health.
Collapse
Affiliation(s)
- Cinzia La Rocca
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Sabrina Tait
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Cristiana Guerranti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy.
| | - Luca Busani
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Francesca Ciardo
- Department of Obstetric and Gynecological Sciences and Urological Sciences, University of Roma Sapienza, S. Andrea Hospital, Roma 00189, Italy.
| | - Bruno Bergamasco
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Laura Stecca
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Guido Perra
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy.
| | - Francesca Romana Mancini
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| | - Roberto Marci
- Department of Biomedical Sciences and Advanced Therapies, Section of Obstetrics and Gynaecology, University of Ferrara, Ferrara 44121, Italy.
| | - Giulia Bordi
- Department of Obstetric and Gynecological Sciences and Urological Sciences, University of Roma Sapienza, S. Andrea Hospital, Roma 00189, Italy.
| | - Donatella Caserta
- Department of Obstetric and Gynecological Sciences and Urological Sciences, University of Roma Sapienza, S. Andrea Hospital, Roma 00189, Italy.
| | - Silvano Focardi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy.
| | - Massimo Moscarini
- Department of Obstetric and Gynecological Sciences and Urological Sciences, University of Roma Sapienza, S. Andrea Hospital, Roma 00189, Italy.
| | - Alberto Mantovani
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Roma 00161, Italy.
| |
Collapse
|
6
|
Schneider JE, Brozek JM, Keen-Rhinehart E. Our stolen figures: the interface of sexual differentiation, endocrine disruptors, maternal programming, and energy balance. Horm Behav 2014; 66:104-19. [PMID: 24681201 DOI: 10.1016/j.yhbeh.2014.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The prevalence of adult obesity has risen markedly in the last quarter of the 20th century and has not been reversed in this century. Less well known is the fact that obesity prevalence has risen in domestic, laboratory, and feral animals, suggesting that all of these species have been exposed to obesogenic factors present in the environment. This review emphasizes interactions among three biological processes known to influence energy balance: Sexual differentiation, endocrine disruption, and maternal programming. Sexual dimorphisms include differences between males and females in body weight, adiposity, adipose tissue distribution, ingestive behavior, and the underlying neural circuits. These sexual dimorphisms are controlled by sex chromosomes, hormones that masculinize or feminize adult body weight during perinatal development, and hormones that act during later periods of development, such as puberty. Endocrine disruptors are natural and synthetic molecules that attenuate or block normal hormonal action during these same developmental periods. A growing body of research documents effects of endocrine disruptors on the differentiation of adipocytes and the central nervous system circuits that control food intake, energy expenditure, and adipose tissue storage. In parallel, interest has grown in epigenetic influences, including maternal programming, the process by which the mother's experience has permanent effects on energy-balancing traits in the offspring. This review highlights the points at which maternal programming, sexual differentiation, and endocrine disruption might dovetail to influence global changes in energy balancing traits.
Collapse
Affiliation(s)
- Jill E Schneider
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA.
| | - Jeremy M Brozek
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | - Erin Keen-Rhinehart
- Susquehanna University, Department of Biological Sciences, Selinsgrove, PA 17870, USA
| |
Collapse
|
7
|
Abstract
Rates of metabolic diseases have increased at an astounding rate in recent decades. Even though poor diet and physical inactivity are central drivers, these lifestyle changes alone fail to fully account for the magnitude and rapidity of the epidemic. Thus, attention has turned to identifying novel risk factors, including the contribution of environmental endocrine disrupting chemicals. Epidemiologic and preclinical data support a role for various contaminants in the pathogenesis of diabetes. In addition to the vascular risk associated with dysglycemia, emerging evidence implicates multiple pollutants in the pathogenesis of atherosclerosis and cardiovascular disease. Reviewed herein are studies linking endocrine disruptors to these key diseases that drive significant individual and societal morbidity and mortality. Identifying chemicals associated with metabolic and cardiovascular disease as well as their mechanisms of action is critical for developing novel treatment strategies and public policy to mitigate the impact of these diseases on human health.
Collapse
Affiliation(s)
- Andrew G. Kirkley
- Committee on Molecular Pathogenesis and Molecular Medicine
- University of Chicago, Chicago, IL
| | - Robert M. Sargis
- Committee on Molecular Metabolism and Nutrition
- Kovler Diabetes Center
- Section of Endocrinology, Diabetes and Metabolism
- University of Chicago, Chicago, IL
| |
Collapse
|
8
|
Kim JY, Yi BR, Go RE, Hwang KA, Nam KH, Choi KC. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1264-74. [PMID: 24835555 DOI: 10.1016/j.etap.2014.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 05/15/2023]
Abstract
Methoxychlor and triclosan are emergent or suspected endocrine-disrupting chemicals (EDCs). Methoxychlor [MXC; 1,1,1-trichlor-2,2-bis (4-methoxyphenyl) ethane] is an organochlorine pesticide that has been primarily used since dichlorodiphenyltrichloroethane (DDT) was banned. In addition, triclosan (TCS) is used as a common component of soaps, deodorants, toothpastes, and other hygiene products at concentrations up to 0.3%. In the present study, the potential impact of MXC and TCS on ovarian cancer cell growth and underlying mechanism(s) was examined following their treatments in BG-1 ovarian cancer cells. As results, MXC and TCS induced BG-1 cell growth via regulating cyclin D1, p21 and Bax genes related with cell cycle and apoptosis. A methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay confirmed that the proliferation of BG-1 ovarian cancer cells was stimulated by MXC (10(-6), 10(-7), 10(-8), and 10(-9)M) or TCS (10(-6), 10(-7), 10(-8), and 10(-9)M). Treatment of BG-1 cells with MXC or TCS resulted in the upregulation of cyclin D1 and downregulation of p21 and Bax transcriptions. In addition, the protein level of cyclin D1 was increased by MXC or TCS while p21 and Bax protein levels appeared to be reduced in these cells. Furthermore, MXC- or TCS-induced alterations of these genes were reversed in the presence of ICI 182,780 (10(-7)M), suggesting that the changes in these gene expressions may be regulated by an ER-dependent signaling pathway. In conclusion, the results of our investigation indicate that two potential EDCs, MXC and TCS, may stimulate ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an ER-dependent pathway.
Collapse
Affiliation(s)
- Joo-Young Kim
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Bo-Rim Yi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|