1
|
Nanjala C, Ren J, Mutie FM, Waswa EN, Mutinda ES, Odago WO, Mutungi MM, Hu GW. Ethnobotany, phytochemistry, pharmacology, and conservation of the genus Calanthe R. Br. (Orchidaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114822. [PMID: 34774685 DOI: 10.1016/j.jep.2021.114822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Genus Calanthe (family Orchidaceae) consists of more than 207 species distributed in both tropical and subtropical regions. In traditional medicine, Calanthe species provide remedies against various conditions such as arthritis, rheumatism, traumatic injuries, snake-bites, abdominal discomfort, nose bleeding, common colds, ulcers, chronic coughs, and others. Some species are also used as aphrodisiacs, tonics, and as pain relievers on joints and toothaches. AIM OF THE REVIEW This review provides comprehensive information on the herbal uses, chemical components, pharmacological activities, and conservation of Calanthe, which might be useful in the future development of potent herbal medicines and facilitate the enactment of better conservation strategies. MATERIALS AND METHODS Relevant information was obtained from online databases including SCI-Finder, Google Scholar, Web of Science, Science Direct, PubMed, Springer, IOP Science, and other web sources such as PubChem, The Plant List, and World Flora Online. Books, Ph.D. and MSc dissertations were used for unpublished literature. Information from Chinese literature was obtained from the CNKI database. RESULTS In total, 19 species of the genus Calanthe have been reported to be used in traditional medicine in different countries of Asia. A total of 265 chemical compounds from different chemical classes including, alkaloids, terpenoids, phenolic compounds and phenolic derivatives, phenanthrenes, and others, have been identified from Calanthe species. Calanquinone A isolated from C. arisanensis has been reported to exhibit antitumor activity against six malignant cell lines. Other bioactive compounds from Calanthe with pharmacological activity include phenanthrenes, phenanthrenequinones, 6'-O-β-D-apiofuranosylindican, 4H-Pyran-4one, 2, 3-dihydro-3,5 dihydroxy-6-methyl, and calanthoside. These compounds exhibit valuable biological properties such as hair restoration, anticancer activity, anti-inflammatory and antiarthritic activity, antidiabetic and hepatoprotective potency, antiplatelet aggregation action, and antibacterial and antifungal activities. Some Calanthe species, including C. ecallosa and C. yuana, are endangered in the IUCN red list. The high risk of extinction is attributed to illegal trade and unsustainable harvesting and utilization. CONCLUSIONS This review summarizes the herbal uses, chemical components, biological activity, and conservation of Calanthe. The pharmacological studies on this genus are limited; thus, extensive research on the toxicology, pharmaceutical standardization, and mechanism of action of the isolated bioactive compounds are needed. Since some species of Calanthe are listed as endangered, stringent guidelines on trade, collection, and sustainable utilization of medicinal orchids should be set up to facilitate the conservation of these species.
Collapse
Affiliation(s)
- Consolata Nanjala
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Ren
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Fredrick Munyao Mutie
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Moses Mutuse Mutungi
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Nanjala C, Ren J, Mutie FM, Waswa EN, Mutinda ES, Odago WO, Mutungi MM, Hu GW. Ethnobotany, phytochemistry, pharmacology, and conservation of the genus Calanthe R. Br. (Orchidaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114822. [DOI: https:/doi.org/10.1016/j.jep.2021.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
3
|
Serum concentrations of free indoxyl and p-cresyl sulfate are associated with mineral metabolism variables and cardiovascular risk in hemodialysis patients. J Nephrol 2022; 35:1457-1465. [PMID: 35175580 DOI: 10.1007/s40620-022-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are uremic toxins associated with cardiovascular outcome in CKD patients. The present work is an analysis of the association of serum free, total IS and PCS with cardiovascular events and calcium-phosphate metabolism variables in hemodialysis patients. METHODS Serum levels of total and free IS and PCS were measured in 139 hemodialysis patients. Their relationship with calcium-phosphate metabolism variables were tested in an observational cohort study. In addition, their association with cardiovascular events was investigated during a 4-year follow-up. RESULTS Patients in the highest tertile (T3) of serum free IS showed lower serum 1,25(OH)2D compared to patients in the middle (T2) and lowest tertile (T1); in addition to this, T3 patients showed lower serum irisin than T1 patients and lower serum PTH than all the other subjects (T1 + T2) combined. Serum PTH was also measured during the two years after the baseline measurement and was higher in patients in the T1 than in those in the T3 of serum free IS. Cox regression analysis showed that cardiovascular risk was lower in T1 patients than in those in the T3 of serum free PCS, both using a univariate (OR 2.55, 95% CI 1.2-5.43; p = 0.015) or multivariate model (OR 2.48, 95% CI 1.12-5.51; p = 0.003). CONCLUSIONS Serum free IS may be associated with PTH and 1,25(OH)2D secretion, whereas free PCS may predict cardiovascular risk in hemodialysis patients.
Collapse
|
4
|
Blachier F, Andriamihaja M. Effects of the L-tyrosine-derived bacterial metabolite p-cresol on colonic and peripheral cells. Amino Acids 2021; 54:325-338. [PMID: 34468872 DOI: 10.1007/s00726-021-03064-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Specific families of bacteria present within the intestinal luminal content produce p-cresol from L-tyrosine. Although the hosts do not synthesize p-cresol, they can metabolize this compound within their colonic mucosa and liver leading to the production of co-metabolites including p-cresyl sulfate (p-CS) and p-cresyl glucuronide (p-CG). p-Cresol and its co-metabolites are recovered in the circulation mainly conjugated to albumin, but also in their free forms that are excreted in the urine. An increased dietary protein intake raises the amount of p-cresol recovered in the feces and urine, while fecal excretion of p-cresol is diminished by a diet containing undigestible polysaccharides. p-Cresol in excess is genotoxic for colonocytes. In addition, in these cells, this bacterial metabolite decreases mitochondrial oxygen consumption, while increasing the anion superoxide production. In chronic kidney disease (CKD), marked accumulation of p-cresol and p-CS in plasma is measured, and in renal tubular cells, p-cresol and p-CS increase oxidative stress, affect mitochondrial function, and lead to cell death, strongly suggesting that these 2 compounds act as uremic toxins that aggravate CKD progression. p-Cresol and p-CS are also suspected to play a role in the CKD-associated adverse cardiovascular events, since they affect endothelial cell proliferation and migration, decrease the capacity of endothelial wound repair, and increase the senescence of endothelial cells. Finally, the fact that concentration of p-cresol is transiently increased in young autistic children biological fluids, and that intraperitoneal injection of p-cresol in animal models induces some behavioral characteristics observed in the autism spectrum disorders (ASD), raise the view that p-cresol may possibly represent one of the components involved in ASD etiology. Further pre-clinical and clinical studies are obviously needed to determine if the lowering of p-cresol and/or p-CS circulating concentrations, by dietary and/or pharmacological means, would allow, by itself or in combination with other interventions, to improve CKD progression and associated cardiovascular outcomes, as well as some neurological outcomes in children with an early diagnosis of autism.
Collapse
Affiliation(s)
- F Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
| | - M Andriamihaja
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
5
|
Ramos RL, Moreira VR, Lebron YAR, Santos AV, Santos LVS, Amaral MCS. Phenolic compounds seasonal occurrence and risk assessment in surface and treated waters in Minas Gerais-Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115782. [PMID: 33120340 DOI: 10.1016/j.envpol.2020.115782] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
This study provided a monitoring of phenolic compounds occurrence in a river and in its treated water by a conventional water treatment plant (WTP) throughout a year-period, in Minas Gerais - Brazil. Furthermore, the environmental risk (hazard quotient - HQ), the human health risk (margin of exposure - MOE), and the cancer risk were calculated for the compounds. The results indicated that sixteen out of the seventeen investigated phenolic compounds were detected at some point during the sampling campaign. The most frequent compounds in the raw surface water were 2,3,4-trichlorophenol (234TCP), 2,4-dimethylphenol (24DMP), and 4-nitrophenol (4NP), whereas in treated water were 4NP and bisphenol A (BPA). In addition, the highest total concentration values were corelated to the months in which there was less precipitation, demonstrating that the presence of this micropollutants may be subject to seasonality. From the treated water results, it was not possible to state the efficiency of the conventional WTP in eliminating the phenols, since in some samples the phenolic compounds were totally removed and in others their increase or formation occurred. Regarding to the risk assessments, most of the evaluated compounds were considered highly toxic to some trophic level and posed a significant human health risk. Additionally, the risk reduction of phenolics using conventional WTP was low. The sixteen phenols contamination in surface and drinking waters appears to be subject to seasonality. Besides that, an alarming risk for environment and human health was identified.
Collapse
Affiliation(s)
- Ramatisa L Ramos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Victor R Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Yuri A R Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Amanda V Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Lucilaine V S Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Míriam C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Guo Y, Bian X, Liu J, Zhu M, Li L, Yao T, Tang C, Ravichandran V, Liao P, Papadimitriou K, Yin J. Dietary Components, Microbial Metabolites and Human Health: Reading between the Lines. Foods 2020; 9:E1045. [PMID: 32756378 PMCID: PMC7466307 DOI: 10.3390/foods9081045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Trillions of bacteria reside in the human gut and they metabolize dietary substances to obtain nutrients and energy while producing metabolites. Therefore, different dietary components could affect human health in various ways through microbial metabolism. Many such metabolites have been shown to affect human physiological activities, including short-chain fatty acids metabolized from carbohydrates; indole, kynurenic acid and para-cresol, metabolized from amino acids; conjugated linoleic acid and linoleic acid, metabolized from lipids. Here, we review the features of these metabolites and summarize the possible molecular mechanisms of their metabolisms by gut microbiota. We discuss the potential roles of these metabolites in health and diseases, and the interactions between host metabolism and the gut microbiota. We also show some of the major dietary patterns around the world and hope this review can provide insights into our eating habits and improve consumers' health conditions.
Collapse
Affiliation(s)
- Yao Guo
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Xiaohan Bian
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Jiali Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Ming Zhu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Lin Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Tingyu Yao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Congjia Tang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Vinothkannan Ravichandran
- State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China;
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Konstantinos Papadimitriou
- Department of Food Science and Technology, School of Agriculture and Food, University of Peloponnese, 22131 Antikalamos, Greece;
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| |
Collapse
|
7
|
Peng YS, Syu JP, Wang SD, Pan PC, Kung HN. BSA-bounded p-cresyl sulfate potentiates the malignancy of bladder carcinoma by triggering cell migration and EMT through the ROS/Src/FAK signaling pathway. Cell Biol Toxicol 2019; 36:287-300. [PMID: 31873818 DOI: 10.1007/s10565-019-09509-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
Para-cresyl sulfate (P-CS), a major uremic toxin derived from the metabolites of tyrosine and phenylalanine through liver, existed in the blood of patients with chronic kidney disease (CKD). CKD increases the malignancy in bladder cancers; however, effects of P-CS on bladder cancers are not fully understood. P-CS is conjugated with BSA physiologically, and this study aims to investigate the effects and possible underlying mechanisms of BSA-bounded P-CS on human bladder cancer cells. With P-CS treatment, the intracellular ROS increased in bladder cancer cells. ROS then triggered epithelial-mesenchymal transition (EMT), stress fiber redistribution, and cell migration. With specific inhibitors, the key signals regulating P-CS-treated migration are Src and FAK. This study provided a clinical clue that patients with higher serum P-CS have a higher risk of malignant urothelial carcinomas, and a regulatory pathway of how P-CS regulates bladder cancer migration.
Collapse
Affiliation(s)
- Yu-Sen Peng
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.,Department of Electrical Engineering, Yuan-Ze University, Taoyuan City, Taiwan
| | - Jhih-Pu Syu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, 10051, Taipei, Taiwan
| | - Sheng-De Wang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, 10051, Taipei, Taiwan
| | - Pie-Chun Pan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, 10051, Taipei, Taiwan
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, 10051, Taipei, Taiwan.
| |
Collapse
|
8
|
Yamagami F, Tajiri K, Yumino D, Ieda M. Uremic Toxins and Atrial Fibrillation: Mechanisms and Therapeutic Implications. Toxins (Basel) 2019; 11:E597. [PMID: 31614923 PMCID: PMC6832954 DOI: 10.3390/toxins11100597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in the general population. There is a close association between chronic kidney disease (CKD) and AF. In recent years, attention has been focused on the relationship between AF and uremic toxins, including indoxyl sulfate (IS). Several animal studies have shown that IS promotes the development and progression of AF. IS has been shown to cause fibrosis and inflammation in the myocardium and exacerbate AF by causing oxidative stress and reducing antioxidative defense. Administration of AST-120, an absorbent of uremic toxins, decreases uremic toxin-induced AF in rodents. We have recently reported that patients with a higher serum IS level exhibit a higher rate of AF recurrence after catheter ablation, with serum IS being a significant predictor of AF recurrence. In this review, we discuss the possible mechanisms behind the AF-promoting effects of uremic toxins and summarize the reported clinical studies of uremic toxin-induced AF.
Collapse
Affiliation(s)
- Fumi Yamagami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
- YUMINO Heart Clinic, Toshima-ku, Tokyo 171-0033, Japan.
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Dai Yumino
- YUMINO Heart Clinic, Toshima-ku, Tokyo 171-0033, Japan.
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
9
|
A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: Current status and potential challenges. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Development of the LC-MS/MS method for determining the p-cresol level in plasma. J Pharm Biomed Anal 2019; 167:149-154. [PMID: 30772758 DOI: 10.1016/j.jpba.2019.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/12/2019] [Accepted: 01/25/2019] [Indexed: 01/22/2023]
Abstract
p-Cresol is a protein-bound uremic retention solute that originates in the intestine through bacterial metabolism and accumulates throughout the body in case of kidney failure. To date, there has been no method to analyze unconjugated p-cresol concentration in the blood with a limit of detection lower than 75 pg. Thus, the aim of this study was to develop and validate a novel liquid chromatography-tandem mass spectrometry method for the determination of unconjugated p-cresol in plasma with a lower detection limit than what has been determined using previously described methods. Sample preparation included derivatization of p-cresol with dansyl chloride (derivatization reagent) showed to be a better approach to analyze the compound. The method optimization involved various pH, time of the reaction, and concentration of derivatization reagent. The validation process was performed according to the procedures prescribed by the European Medicines Agency. All analyzed validation criteria were fulfilled. The novel validated method was applied to compare the level of p-cresol in patients with chronic renal failure before and after dialysis (n = 24). Additionally, the concentration of p-cresol was determined in patients with multiple organ dysfunction syndrome (n = 23). The established method can be used for determination of p-cresol in the plasma in further clinical research.
Collapse
|
11
|
Tang WH, Wang CP, Yu TH, Tai PY, Liang SS, Hung WC, Wu CC, Huang SH, Lee YJ, Chen SC. Protein-bounded uremic toxin p-cresylsulfate induces vascular permeability alternations. Histochem Cell Biol 2018; 149:607-617. [PMID: 29589110 DOI: 10.1007/s00418-018-1662-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
The goal of the present studies is to investigate that the impact of p-cresylsulfate (PCS) on the endothelial barrier integrity via in situ exposure and systemic exposure. Vascular permeability changes induced by local injection of PCS were evaluated by the techniques of both Evans blue (EB) and India ink tracer. Rats were intravenously injected with EB or India ink followed by intradermal injections of various doses of PCS (0, 0.4, 2, 10 and 50 µmol/site) on rat back skins. At different time points, skin EB was extracted and quantified. The administration of India ink was used to demonstrate leaky microvessels. Skin PCS levels were also determined by liquid chromatography-mass spectrometry. We also investigated whether the increased endothelial leakage occurred in the aortic endothelium in rats treated with 5/6 nephrectomy and intraperitoneal injection of PCS 50 mg/kg/day for 4 weeks. The aortic endothelial integrity was evaluated by increased immunoglobulin G (IgG) leakage. High doses of PCS, but not lower doses, significantly induced vascular leakage as compared to saline injection and EB leakage exhibited in time-dependent manner. A time-correlated increase in leaky microvessels was detected in the tissues examined. The injected PCS declined with time and displayed an inverse relationship with vascular leakage. Chronic kidney disease (CKD) rats administered with PCS, compared to control rats, had significantly higher serum levels of PCS and apparent IgG deposition in the aortic intima. Increased endothelial leakage induced by PCS in skin microvessels and the aorta of CKD rats suggests that the PCS-induced endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Pei-Yang Tai
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chin Hung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Cheng-Ching Wu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Sung-Hao Huang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | | | - Shih-Chieh Chen
- Department of Anatomy, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Huang SY, Chen YA, Chen SA, Chen YJ, Lin YK. Uremic Toxins - Novel Arrhythmogenic Factor in Chronic Kidney Disease - Related Atrial Fibrillation. ACTA CARDIOLOGICA SINICA 2016; 32:259-64. [PMID: 27274165 DOI: 10.6515/acs20151116a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Chronic kidney disease (CKD) is associated with a high prevalence of AF, and uremic toxins are an important risk factor for cardiovascular diseases associated with CKD. Uremic toxins can produce pro-fibrotic, pro-hypertrophic, and pro-inflammatory effects on cardiac tissues and enhance oxidative stress or neurohormonal phenomena of cardiovascular injury, which are recognized as arrhythmogenic factors of AF. This article reviews the clinical, molecular, and electrophysiological data of uremic toxins in CKD considered to induce AF through multiple mechanisms on structural and electrical remodeling of the cardiovascular system.
Collapse
Affiliation(s)
- Shih-Yu Huang
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei; ; Fu Jen Catholic University, School of Medicine, New Taipei City; ; Division of Cardiology, Department of Internal Medicine, Cathay General Hospital, Taipei
| | - Yi-Ann Chen
- Division of Nephrology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City
| | - Shih-Ann Chen
- Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital; ; School of Medicine, National Yang-Ming University
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei; ; Division of Cardiology, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital; ; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Recombinant Human Annexin A5 Can Repair the Disrupted Cardiomyocyte Adherens Junctions in Endotoxemia. Shock 2016; 44:83-9. [PMID: 25799159 DOI: 10.1097/shk.0000000000000370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recombinant human annexin A5 (Anx5) is known to protect cardiac function during endotoxemia, although the underlying mechanisms have yet to be elucidated. In this study, we demonstrated that Anx5 could repair the disrupted cardiomyocyte adherens junctions and improve the myocardial contractile function in lipopolysaccharide (LPS)-induced endotoxemia. Mechanistic studies revealed that Anx5 could antagonize the disassociation between p120-catenin (p120) and N-cadherin as well as the dephosphorylation of p120 in LPS-treated cardiomyocytes. Small interference RNA and specific inhibitors experiment demonstrated that Anx5 regulated p120 functions by inhibition of p21-activated kinase 5 in a protein kinase Cα-dependent way. Moreover, Anx5 could inhibit nuclear factor κB activation and downregulate the level of inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β, which contributed to improving tissue pathological damage in LPS-induced mouse endotoxemia model. Taken together, Anx5 could protect cardiomyocytes adherens junctions and improve myocardial contractile function via regulation of p120 and anti-inflammation in LPS-induced endotoxemia. This study provided novel insights in the prevention and treatment of septic shock.
Collapse
|
14
|
Wang C, Zhan Y, Wang F, Li H, Xie L, Liu B, Li Y, Mu D, Zheng H, Zhou K, Hua Y. Parental occupational exposures to endocrine disruptors and the risk of simple isolated congenital heart defects. Pediatr Cardiol 2015; 36:1024-37. [PMID: 25628158 DOI: 10.1007/s00246-015-1116-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
This study aims to explore the associations between parental occupational exposures to endocrine disruptors (EDs) and simple isolated congenital heart defects (CHDs). A case-control study with standardized data collection involving 761 children with isolated CHDs and 609 children without any congenital malformations was conducted in Sichuan Province of China from March in 2012 to August in 2013. An adjusted job exposure matrix was used for occupational EDs exposure assessment. Logistic regression analysis was performed to assess the associations between parental occupational EDs exposures and CHDs. Maternal age at births, maternal education level, gravity, parity, induced abortion, folic acid use, medication use, drinking capacity and area of residence periconceptionally were selected as confounding factors for mothers. For fathers, we selected the following confounding factors: paternal education level, smoking, drinking frequencies and drinking capacity periconceptionally. Maternal occupational exposures to phthalates are associated with perimembranous ventricular septal defect (PmVSD) (P = 0.001, adjusted OR 3.7, 95 % CI 1.7-8.0), patent ductus arteriosus (PDA) (P = 0.002, adjusted OR 3.8, 95 % CI 1.6-8.9), secundum atrial septal defect (s-ASD) (P = 0.008, adjusted OR 3.5, 95 % CI 1.4-8.7) and pulmonary valve stenosis (PS) (P = 0.035, adjusted OR 4.2, 95 % CI 1.1-16.0), to alkylphenolic compounds and PmVSD (P = 0.003, adjusted OR 2.2, 95 % CI 1.3-3.6), PDA (P = 0.005, adjusted OR 2.0, 95 % CI 1.1-3.5) and PS (P = 0.004, adjusted OR 3.8, 95 % CI 1.5-9.4), to heavy metals with PmVSD (P = 0.003, adjusted OR 7.3, 95 % CI 2.0-27.6) and s-ASD (P = 0.034, adjusted OR 6.5, 95 % CI 1.1-36.7). Paternal occupational exposures to phthalates are associated with PmVSD (P = 0.035, adjusted OR 1.6, 95 % CI 1.0-2.4) and PS (P = 0.026, adjusted OR 2.4, 95 % CI 1.1-5.2), to alkylphenolic compounds (P = 0.027, adjusted OR 1.5, 95 % CI 1.0-2.2) with PmVSD. In conclusion, parental occupational exposures to some specific EDs, in particular phthalates and alkylphenolic compounds, are associated with an increased risk of some CHD phenotypes. However, the findings need to be considered more circumspectly regarding a crude measure of exposure probabilities and small numbers.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tang WH, Wang CP, Chung FM, Huang LLH, Yu TH, Hung WC, Lu LF, Chen PY, Luo CH, Lee KT, Lee YJ, Lai WT. Uremic retention solute indoxyl sulfate level is associated with prolonged QTc interval in early CKD patients. PLoS One 2015; 10:e0119545. [PMID: 25893644 PMCID: PMC4403985 DOI: 10.1371/journal.pone.0119545] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022] Open
Abstract
Total mortality and sudden cardiac death is highly prevalent in patients with chronic kidney disease (CKD). In CKD patients, the protein-bound uremic retention solute indoxyl sulfate (IS) is independently associated with cardiovascular disease. However, the underlying mechanisms of this association have yet to be elucidated. The relationship between IS and cardiac electrocardiographic parameters was investigated in a prospective observational study among early CKD patients. IS arrhythmogenic effect was evaluated by in vitro cardiomyocyte electrophysiological study and mathematical computer simulation. In a cohort of 100 early CKD patients, patients with corrected QT (QTc) prolongation had higher IS levels. Furthermore, serum IS level was independently associated with prolonged QTc interval. In vitro, the delay rectifier potassium current (IK) was found to be significantly decreased after the treatment of IS in a dose-dependent manner. The modulation of IS to the IK was through the regulation of the major potassium ion channel protein Kv 2.1 phosphorylation. In a computer simulation, the decrease of IK by IS could prolong the action potential duration (APD) and induce early afterdepolarization, which is known to be a trigger mechanism of lethal ventricular arrhythmias. In conclusion, serum IS level is independently associated with the prolonged QTc interval in early CKD patients. IS down-regulated IK channel protein phosphorylation and the IK current activity that in turn increased the cardiomyocyte APD and QTc interval in vitro and in the computer ORd model. These findings suggest that IS may play a role in the development of arrhythmogenesis in CKD patients.
Collapse
Affiliation(s)
- Wei-Hua Tang
- Graduate Institute of Medicine, Collage of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Lynn L. H. Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Chin Hung
- Division of Cardiology, Department of Internal Medicine E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Li-Fen Lu
- Division of Cardiac Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Po-Yuan Chen
- Institute of Electric Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Ching-Hsing Luo
- Institute of Electric Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Kun-Tai Lee
- Graduate Institute of Medicine, Collage of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Wen-Ter Lai
- Graduate Institute of Medicine, Collage of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Lin HH, Huang CC, Lin TY, Lin CY. p-Cresol mediates autophagic cell death in renal proximal tubular cells. Toxicol Lett 2015; 234:20-9. [DOI: 10.1016/j.toxlet.2015.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/27/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
17
|
Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J Electrocardiol 2015; 48:434-40. [PMID: 25732099 DOI: 10.1016/j.jelectrocard.2015.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 01/04/2023]
Abstract
Defects in intercellular coupling in the heart play a key role in the initiation and persistence of malignant arrhythmias. Such disorders result from abnormal expression and distribution of connexins, the major constituents of cardiac gap junction channels. The alterations of myocardial connexin are well established as a consistent feature of both human and animal heart disease and aging. Following these facts, the modulation of connexin mediated intercellular coupling is suggested as a new antiarrhythmic approach. This review provides recent data supporting this concept. It can be challenging for the development of new antiarrhythmic drugs. Moreover, findings point out the implication of some endogenous compounds in protection from life-threatening arrhythmias via preservation of myocardial connexin.
Collapse
|