1
|
Kumar G, Saini M, Kundu S. Therapeutic enzymes as non-conventional targets in cardiovascular impairments:A Comprehensive Review. Can J Physiol Pharmacol 2021; 100:197-209. [PMID: 34932415 DOI: 10.1139/cjpp-2020-0732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last few decades, substantial progress has been made towards the understanding of cardiovascular diseases (CVDs). In-depth mechanistic insights have also provided opportunities to explore novel therapeutic targets and treatment regimens to be discovered. Therapeutic enzymes are an example of such opportunities. The balanced functioning of such enzymes protects against a variety of CVDs while on the other hand, even a small shift in the normal functioning of these enzymes may lead to deleterious outcomes. Owing to the great versatility of these enzymes, inhibition and activation are key regulatory approaches to counter the onset and progression of several cardiovascular impairments. While cardiovascular remedies are already available in excess and of course they are efficacious, a comprehensive description of novel therapeutic enzymes to combat CVDs is the need of the hour. In light of this, the regulation of the functional activity of these enzymes also opens a new avenue for the treatment approaches to be employed. This review describes the importance of non-conventional enzymes as potential candidates in several cardiovascular disorders while highlighting some of the recently targeted therapeutic enzymes in CVDs.
Collapse
Affiliation(s)
- Gaurav Kumar
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| | - Manisha Saini
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| | - Suman Kundu
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| |
Collapse
|
2
|
Hovenia dulcis Thumberg: Phytochemistry, Pharmacology, Toxicology and Regulatory Framework for Its Use in the European Union. Molecules 2021; 26:molecules26040903. [PMID: 33572099 PMCID: PMC7914479 DOI: 10.3390/molecules26040903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022] Open
Abstract
Hovenia dulcis Thunberg is an herbal plant, belonging to the Rhamnaceae family, widespread in west Asia, USA, Australia and New Zealand, but still almost unknown in Western countries. H. dulcis has been described to possess several pharmacological properties, such as antidiabetic, anticancer, antioxidant, anti-inflammatory and hepatoprotective, especially in the hangover treatment, validating its use as an herbal remedy in the Chinese Traditional Medicine. These biological properties are related to a variety of secondary metabolites synthesized by the different plant parts. Root, bark and leaves are rich of dammarane-type triterpene saponins; dihydrokaempferol, quercetin, 3,3′,5′,5,7-pentahydroflavone and dihydromyricetin are flavonoids isolated from the seeds; fruits contain mainly dihydroflavonols, such as dihydromyricetin (or ampelopsin) and hovenodulinol, and flavonols such as myricetin and gallocatechin; alkaloids were found in root, barks (frangulanin) and seeds (perlolyrin), and organic acids (vanillic and ferulic) in hot water extract from seeds. Finally, peduncles have plenty of polysaccharides which justify the use as a food supplement. The aim of this work is to review the whole scientific production, with special focus on the last decade, in order to update phytochemistry, biological activities, nutritional properties, toxicological aspect and regulatory classification of H. dulcis extracts for its use in the European Union.
Collapse
|
3
|
Abstract
Flavonoids are tricyclic polyphenolic compounds naturally occurring in plants. Being nature’s antioxidants flavonoids have been shown to reduce the damages induced by oxidative stress in cells. Besides being an antioxidant, flavonols are demonstrated to have anti-infective properties, i.e., antiviral, antifungal, anti-angiogenic, anti-tumorigenic, and immunomodulatory bioproperties. Plants use them as one of their defense mechanisms against radiation-induced DNA damage and also for fungal infections. The use of flavonols for fabrication of new drugs has been underway with objectives to develop safer and effective therapeutic agents. This review covers 15 flavonols for their structure, biological properties, role in plant metabolisms, and current research focused on computational drug design using flavonols for searching drug leads.
Collapse
|
4
|
Sapmaz C, Firat T, Kukner A, Bozcaarmutlu A. Modulation of xenobiotic metabolizing enzyme activities in rat liver by co-administration of morin, endosulfan, and 7,12-dimethylbenz[a]anthracene. Drug Chem Toxicol 2018; 43:13-21. [PMID: 29772942 DOI: 10.1080/01480545.2018.1471089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Morin is a flavonoid which is present in many plants. Endosulfan and 7,12-dimethylbenz[a]anthracene (DMBA) are toxic chemicals that humans are exposed to in their daily lives. In this study, the protective role of morin was investigated in endosulfan and DMBA treated rats. Eight groups, each comprising seven 2.5-month-old adult male Wistar rats (weighing 170-255 g), were used. Endosulfan, morin, and DMBA were administered individually or in combinations, at 5 mg/kg body weight (bw) (three times/week), 25 mg/kg bw (three times/week), and 30 mg/kg bw (once/week for three weeks) via oral gavage, respectively. On day 54 of the administration period, the rats were killed. DMBA + endosulfan co-administration significantly increased CYP1A1-, CYP1A2-, CYP2E-, and GST-associated activities in the rats compared to the control. DMBA + endosulfan + morin significantly increased CYP1A1, CYP1A2, CYP3A, and GST associated activities in the rats relative to the control. Histopathological studies were performed to investigate protective effects of morin on liver damage. The results indicated that DMBA + endosulfan treatment induced liver damage, and morin reduced this damage. These findings suggest that CYP1A, CYP3A, and GST enzyme activities participate in the protective mechanism of morin against endosulfan and DMBA induced toxicity.
Collapse
Affiliation(s)
- Canan Sapmaz
- Faculty of Arts and Science, Department of Chemistry, Abant Izzet Baysal University, Bolu, Turkey
| | - Tulin Firat
- Faculty of Medicine, Department of Histology and Embryology, Abant Izzet Baysal University, Bolu, Turkey
| | - Aysel Kukner
- Faculty of Medicine, Department of Histology and Embryology, Abant Izzet Baysal University, Bolu, Turkey
| | - Azra Bozcaarmutlu
- Faculty of Arts and Science, Department of Chemistry, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
5
|
Park JS, Rehman SU, Kim IS, Choi MS, Na CS, Yoo HH. Evaluation of Herb-Drug Interactions of Hovenia dulcis Fruit Extracts. Pharmacogn Mag 2017; 13:236-239. [PMID: 28539714 PMCID: PMC5421419 DOI: 10.4103/0973-1296.204552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
Background: Hovenia dulcis (Rhamnaceae) fruits are popularly used as herbal medicines or dietary supplements in Asian countries due to functions such as liver protection and detoxification from alcohol poisoning. Accordingly, it is very likely for dietary supplemental products, including H. dulcis fruit extracts, to be taken with prescription drugs. Objective: In this study, possible food–drug interactions involving H. dulcis fruit extracts were evaluated based on the inhibition of cytochrome P450 (CYP) enzyme activity. Material and Methods: The water extract of H. dulcis fruit extracts was incubated in human liver microsomes with CYP-specific substrates. The formation of the CYP-specific metabolites was measured using liquid chromatography-tandem mass spectrometry. Results: H. dulcis fruit extracts showed negligible effects on seven CYP isozyme activities at all concentrations tested. Conclusion: This result suggests that H. dulcis fruit extracts may have minimal pharmacokinetic interactions with coadministered drugs through the modulation of CYP enzymes. SUMMARY Food-drug interactions involving H. dulcis fruit extracts were evaluated. The inhibition of CYPs by H. dulcis extracts was tested. H. dulcis extracts showed negligible effects on CYP activities. H. dulcis extracts may have minimal pharmacokinetic interactions with co-administered drugs.
Abbreviations Used: CYP: cytochrome P450 enzymes, HPLC: High performance liquid chromatography, LC-MS/MS : liquid chromatography-tandem mass spectrometry, MRM: multiple-reaction monitoring
Collapse
Affiliation(s)
- Jong Suk Park
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Shaheed Ur Rehman
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - In Sook Kim
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Min Sun Choi
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Chun-Soo Na
- Lifetree Biotech Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
6
|
Bartella L, Furia E, Di Donna L. Mass spectrometry and potentiometry studies of Al(iii)–naringin complexes. RSC Adv 2017. [DOI: 10.1039/c7ra12281k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Here we have studied the complexation of naringin with Al(iii) under physiological conditions (i.e., at 37 °C and in 0.16 mol L−1NaCl).
Collapse
Affiliation(s)
- L. Bartella
- Department of Chemistry and Chemical Technologies
- University of Calabria
- Arcavacata di Rende
- Italy
| | - E. Furia
- Department of Chemistry and Chemical Technologies
- University of Calabria
- Arcavacata di Rende
- Italy
| | - L. Di Donna
- Department of Chemistry and Chemical Technologies
- University of Calabria
- Arcavacata di Rende
- Italy
| |
Collapse
|
7
|
Jabbari M, Khosravi N, Feizabadi M, Ajloo D. Solubility temperature and solvent dependence and preferential solvation of citrus flavonoid naringin in aqueous DMSO mixtures: an experimental and molecular dynamics simulation study. RSC Adv 2017. [DOI: 10.1039/c7ra00038c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study describes the thermodynamics of dissolution of flavonoid naringin in different aqueous solutions of dimethyl sulfoxide (DMSO) containing 0–100% (w/w) under atmospheric pressure and over a temperature range of 298.15 to 325.15 K.
Collapse
Affiliation(s)
- Morteza Jabbari
- School of Chemistry
- Damghan University
- 36716-41167 Damghan
- Iran
| | - Negar Khosravi
- School of Chemistry
- Damghan University
- 36716-41167 Damghan
- Iran
| | - Mina Feizabadi
- School of Chemistry
- Damghan University
- 36716-41167 Damghan
- Iran
| | - Davood Ajloo
- School of Chemistry
- Damghan University
- 36716-41167 Damghan
- Iran
| |
Collapse
|
8
|
Derbyshire MC, Michaelson L, Parker J, Kelly S, Thacker U, Powers SJ, Bailey A, Hammond-Kosack K, Courbot M, Rudd J. Analysis of cytochrome b(5) reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence. Fungal Genet Biol 2015; 82:69-84. [PMID: 26074495 PMCID: PMC4557397 DOI: 10.1016/j.fgb.2015.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022]
Abstract
Septoria tritici blotch (STB) caused by the Ascomycete fungus Zymoseptoria tritici is one of the most economically damaging diseases of wheat worldwide. Z. tritici is currently a major target for agricultural fungicides, especially in temperate regions where it is most prevalent. Many fungicides target electron transfer enzymes because these are often important for cell function. Therefore characterisation of genes encoding such enzymes may be important for the development of novel disease intervention strategies. Microsomal cytochrome b5 reductases (CBRs) are an important family of electron transfer proteins which in eukaryotes are involved in the biosynthesis of fatty acids and complex lipids including sphingolipids and sterols. Unlike the model yeast Saccharomyces cerevisiae which possesses only one microsomal CBR, the fully sequenced genome of Z. tritici bears three possible microsomal CBRs. RNA sequencing analysis revealed that ZtCBR1 is the most highly expressed of these genes under all in vitro and in planta conditions tested, therefore ΔZtCBR1 mutant strains were generated through targeted gene disruption. These strains exhibited delayed disease symptoms on wheat leaves and severely limited asexual sporulation. ΔZtCBR1 strains also exhibited aberrant spore morphology and hyphal growth in vitro. These defects coincided with alterations in fatty acid, sphingolipid and sterol biosynthesis observed through GC-MS and HPLC analyses. Data is presented which suggests that Z. tritici may use ZtCBR1 as an additional electron donor for key steps in ergosterol biosynthesis, one of which is targeted by azole fungicides. Our study reports the first functional characterisation of CBR gene family members in a plant pathogenic filamentous fungus. This also represents the first direct observation of CBR functional ablation impacting upon fungal sterol biosynthesis.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.
| | - Louise Michaelson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Josie Parker
- Centre for Cytochrome P450 Diversity, Institute of Life Science, College of Medicine, Swansea University Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Steven Kelly
- Centre for Cytochrome P450 Diversity, Institute of Life Science, College of Medicine, Swansea University Singleton Park, Swansea SA2 8PP, Wales, UK
| | | | - Stephen J Powers
- Department of Computational and Systems Biology, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Andy Bailey
- Bristol University, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
| | - Kim Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Mikael Courbot
- Syngenta, Syngenta AG, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| | - Jason Rudd
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.
| |
Collapse
|
9
|
Cingolani F, Casasampere M, Sanllehí P, Casas J, Bujons J, Fabrias G. Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II. J Lipid Res 2014; 55:1711-20. [PMID: 24875537 PMCID: PMC4109765 DOI: 10.1194/jlr.m049759] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/27/2014] [Indexed: 01/05/2023] Open
Abstract
Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites.
Collapse
Affiliation(s)
- Francesca Cingolani
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Mireia Casasampere
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Pol Sanllehí
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Faculty of Pharmacy, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), University of Barcelona, E-08028 Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Jordi Bujons
- Biological Chemistry and Molecular Modeling, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| |
Collapse
|