1
|
Role of voltage-sensitive Ca 2+ channels in the in vivo dopamine release induced by the organophosphorus pesticide glufosinate ammonium in rat striatum. Toxicol Lett 2022; 373:105-113. [PMID: 36427774 DOI: 10.1016/j.toxlet.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The possible role of voltage-sensitive calcium channels (VSCC) activation in the glufosinate ammonium (GLA)-induced dopamine release was investigated using selective VSCC blockers and the dopamine levels were measured by HPLC from samples obtained by in vivo cerebral microdialysis. While pretreatment with 10 μM flunarizine (T-type VSCC antagonist) or nicardipine (L-type VSCC antagonist) had no statistically significant effect on dopamine release induced by 10 mM GLA, pretreatment with 100 μM of both antagonists, or 20 μM ω-conotoxin MVIIC (non-selective P/Q-type VSCC antagonist) significantly decreased the GLA-induced dopamine release over 72.2%, 73%, and 70.2%, respectively. Administration of the specific antagonist of neuronal N-type VSCCs, the ω-conotoxin GVIA (20 μM), produced an almost complete blockade of in vivo dopamine release induced by GLA. These results show that GLA-induced dopamine release could be produced by the activation of a wide range of striatal VSCC located at the synaptic terminals and axons of striatal dopaminergic neurons, especially N-type VSCC.
Collapse
|
2
|
Zarrabian S, Jamali S, Fazli-Tabaei S, Haghparast A. Dopaminergic and nitric oxide systems interact to regulate the electrical activity of neurons in the medial septal nucleus in rats. Exp Brain Res 2022; 240:2581-2594. [PMID: 35976391 DOI: 10.1007/s00221-022-06435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
Abstract
Research characterizing the neuronal substrate of anxiety has implicated different brain areas, including the medial septal nucleus (m-SEPT). Previous reports indicated a role of dopamine and nitric oxide (NO) in anxiety-related behaviors. In this study, the extracellular single-unit recording was performed from the m-SEPT in adult male albino Wistar rats. Baseline activity was recorded for 5 min, and the post-injection recording was performed for another 5 min after the microinjection of each drug. The results showed that (1) both D1- and D2-like receptor agonists (SKF-38393 and quinpirole) enhanced the firing rate of m-SEPT neurons; (2) both D1- and D2-like antagonists (SCH-23390 and sulpiride) attenuated the firing rate of m-SEPT neurons; (3) L-arginine (NO precursor) increased the firing rate of m-SEPT neurons, but a non-specific NOS inhibitor, L-NAME, elicited no significant alterations; (4) the non-specific NOS inhibitor reversed the enhanced firing rate produced by SKF-38393 and quinpirole; (5) neither of the dopaminergic antagonists changed the enhanced activity resulted from the application of the NO precursor. These results contribute to our understanding of the complex neurotransmitter interactions in the m-SEPT and showed that both dopaminergic and NO neurotransmission are involved in the modulation of the firing rate of neurons in the m-SEPT.
Collapse
Affiliation(s)
- Shahram Zarrabian
- Department of Anatomical Sciences and Cognitive Neuroscience, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shole Jamali
- Student Research Committee, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Fazli-Tabaei
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
3
|
Ibrahim KA, Abdelgaid HA, Eleyan M, Khwanes SA, Abdel-Daim MM. Ethoprophos induces rats' brain injury and neurobehavioral impairment via transcriptional activation of glial fibrillary acidic protein and tubulin-associated unit even at the threshold inhibition of acetylcholinesterase: A 90-days study. SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146216. [DOI: 10.1016/j.scitotenv.2021.146216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Faro LRF, Justo L, Gómez R, Durán R. Participation of glutamatergic and nitrergic systems in the striatal dopamine release induced by isatin, a MAO inhibitor. Eur J Neurosci 2021; 54:4729-4739. [PMID: 34022091 DOI: 10.1111/ejn.15319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Isatin is a biofactor with different biochemical and pharmacological properties whose effects attract much attention because it is an endogenous inhibitor of the monoamine oxidase in the brain. When exogenously administrated, isatin increases dopamine levels in intact and denervated striatum of rats, an effect that could indicate its potential as a therapeutic agent in Parkinson disease. However, the neurochemical mechanisms by which isatin increases dopamine in the striatum are poorly understood. In the present study, we evaluate the role of the glutamatergic and nitrergic systems in the isatin-induced dopamine release from rat striatum. Our findings show that the intrastriatal administration of 10 mM isatin significantly increases the in vivo release of dopamine (1,104.7% ± 97.1%), and the amino acids glutamate (428.7% ± 127%) and taurine (221% ± 22%) from rat striatum measured by brain microdialysis. The pretreatment with MK-801 (500 µM) or AP5 (650 µM) (glutamatergic NMDA receptors antagonists) significantly reduces the effect of isatin on dopamine release by 52% and 70.5%, respectively. The administration of the nitric oxide synthase inhibitors, L-NAME (100 µM) or 7-NI (100 µM) also decreases the isatin-induced dopamine release by 77% and 42%, respectively. These results show that isatin, in addition to increasing dopamine release, also increases glutamate levels, and possibly activates NMDA receptors and nitric oxide production, which can promote a further increase in the dopamine release.
Collapse
Affiliation(s)
- Lilian R F Faro
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | - Lorenzo Justo
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | - Raquel Gómez
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | - Rafael Durán
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| |
Collapse
|
5
|
Alfonso M, Durán R, Fajardo D, Justo L, Faro LR. Mechanisms of action of paraoxon, an organophosphorus pesticide, on in vivo dopamine release in conscious and freely moving rats. Neurochem Int 2019; 124:130-140. [DOI: 10.1016/j.neuint.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
|
6
|
Faro LRF, Alfonso M, Ferreira VM, Durán R. Role of voltage-gated calcium channels on striatal dopamine release induced by inorganic mercury in freely moving rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 59:13-16. [PMID: 29482112 DOI: 10.1016/j.etap.2018.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/29/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
The possible role of voltage-sensitive calcium channels (VSCC) activation on the HgCl2-induced dopamine release was investigated using selective VSCC blockers and the dopamine levels were measured by HPLC from samples obtained by in vivo brain microdialysis. Infusion of HgCl2 in nicardipine (10 or 100 μM) or flunaricine (10 μM) pretreated animals had no significant effect on dopamine release induced by HgCl2. Pretreatment with 100 μM flunaricine, 20 μM ω-conotoxin MVIIC, or ω-conotoxin GVIA significantly decreased the HgCl2-induced dopamine release over 61%, 88%, and 99%, respectively. HgCl2-induced dopamine release could be produced, at least in part, by activation of VSCC at dopaminergic terminals, especially N- and P/Q-type.
Collapse
Affiliation(s)
| | - Miguel Alfonso
- Department of Functional Biology and Health Sciences, University of Vigo, Spain
| | | | - Rafael Durán
- Department of Functional Biology and Health Sciences, University of Vigo, Spain
| |
Collapse
|
9
|
Cossenza M, Socodato R, Portugal CC, Domith ICL, Gladulich LFH, Encarnação TG, Calaza KC, Mendonça HR, Campello-Costa P, Paes-de-Carvalho R. Nitric oxide in the nervous system: biochemical, developmental, and neurobiological aspects. VITAMINS AND HORMONES 2014; 96:79-125. [PMID: 25189385 DOI: 10.1016/b978-0-12-800254-4.00005-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a very reactive molecule, and its short half-life would make it virtually invisible until its discovery. NO activates soluble guanylyl cyclase (sGC), increasing 3',5'-cyclic guanosine monophosphate levels to activate PKGs. Although NO triggers several phosphorylation cascades due to its ability to react with Fe II in heme-containing proteins such as sGC, it also promotes a selective posttranslational modification in cysteine residues by S-nitrosylation, impacting on protein function, stability, and allocation. In the central nervous system (CNS), NO synthesis usually requires a functional coupling of nitric oxide synthase I (NOS I) and proteins such as NMDA receptors or carboxyl-terminal PDZ ligand of NOS (CAPON), which is critical for specificity and triggering of selected pathways. NO also modulates CREB (cAMP-responsive element-binding protein), ERK, AKT, and Src, with important implications for nerve cell survival and differentiation. Differences in the regulation of neuronal death or survival by NO may be explained by several mechanisms involving localization of NOS isoforms, amount of NO being produced or protein sets being modulated. A number of studies show that NO regulates neurotransmitter release and different aspects of synaptic dynamics, such as differentiation of synaptic specializations, microtubule dynamics, architecture of synaptic protein organization, and modulation of synaptic efficacy. NO has also been associated with synaptogenesis or synapse elimination, and it is required for long-term synaptic modifications taking place in axons or dendrites. In spite of tremendous advances in the knowledge of NO biological effects, a full description of its role in the CNS is far from being completely elucidated.
Collapse
Affiliation(s)
- Marcelo Cossenza
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Fisiologia e Farmacologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Renato Socodato
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camila C Portugal
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ivan C L Domith
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luis F H Gladulich
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Thaísa G Encarnação
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Karin C Calaza
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Henrique R Mendonça
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paula Campello-Costa
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Roberto Paes-de-Carvalho
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|