1
|
Oaku Y, Abe A, Sasano Y, Sasaki F, Kubota C, Yamamoto N, Nagahama T, Nagai N. Minoxidil Nanoparticles Targeting Hair Follicles Enhance Hair Growth in C57BL/6 Mice. Pharmaceutics 2022; 14:pharmaceutics14050947. [PMID: 35631533 PMCID: PMC9145891 DOI: 10.3390/pharmaceutics14050947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
We previously found that 1% minoxidil (MXD) nanoparticles prepared using a bead mill method led to an increase I n hair follicle delivery and hair growth in C57BL/6 mice. In the present study, we designed a nanoparticle formulation containing 5% MXD (MXD-NPs) using the bead mill method and investigated the hair-growth effect of MXD-NPs and a commercially available MXD solution (CA-MXD). Hair growth and in vivo permeation studies were conducted using C57BL/6 mice. Moreover, we examined the MXD contents in the upper (hair bulge) and the lower hair follicle (hair bulb) and observed the hair follicle epithelial stem cells (HFSC) by immunohistochemical staining using the CD200 antibody. The mean particle size of the MXD in the MXD-NPs was 139.8 nm ± 8.9 nm. The hair-growth effect of the MXD-NPs was higher than that of CA-MXD, and the MXD content in the hair bulge of mice treated with MXD-NPs was 7.4-fold that of the mice treated with CA-MXD. In addition, the activation of HFSC was observed around the bulge in the MXD-NPs-treated mice. We showed that MXD-NPs enable the accumulation of MXD in the upper hair follicles more efficiently than CA-MXD, leading the activation of HFSC and the hair growth.
Collapse
Affiliation(s)
- Yoshihiro Oaku
- Research & Development Headquarters Self-Medication, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshinocho, Saitama 331-9530, Japan; (Y.O.); (A.A.); (T.N.)
| | - Akinari Abe
- Research & Development Headquarters Self-Medication, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshinocho, Saitama 331-9530, Japan; (Y.O.); (A.A.); (T.N.)
| | - Yohei Sasano
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (Y.S.); (F.S.); (C.K.)
| | - Fuka Sasaki
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (Y.S.); (F.S.); (C.K.)
| | - Chika Kubota
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (Y.S.); (F.S.); (C.K.)
| | - Naoki Yamamoto
- Research Promotion and Support Headquarters, Center for Clinical Trial and Research Support, Fujita Health University, 1-98 Dengakugakubo, Toyoake 470-1192, Japan;
| | - Tohru Nagahama
- Research & Development Headquarters Self-Medication, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshinocho, Saitama 331-9530, Japan; (Y.O.); (A.A.); (T.N.)
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (Y.S.); (F.S.); (C.K.)
- Correspondence: ; Tel.: +81-6-4307-3638
| |
Collapse
|
2
|
Guo W, Chen S, Li C, Xu J, Wang L. Application of Disulfiram and its Metabolites in Treatment of Inflammatory Disorders. Front Pharmacol 2022; 12:795078. [PMID: 35185542 PMCID: PMC8848744 DOI: 10.3389/fphar.2021.795078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Disulfiram has been used clinically for decades as an anti-alcoholic drug. Recently, several studies have demonstrated the anti-inflammatory effects of disulfiram and its metabolism, which can alleviate the progression of inflammation in vivo and in vitro. In the current study, we summarize the anti-inflammatory mechanisms of disulfiram and its metabolism, including inhibition of pyroptosis by either covalently modifying gasdermin D or inactivating nod-like receptor protein 3 inflammasome, dual effects of intracellular reactive oxygen species production, and inhibition of angiogenesis. Furthermore, we review the potential application of disulfiram and its metabolism in treatment of inflammatory disorders, such as inflammatory bowel disease, inflammatory injury of kidney and liver, type 2 diabetes mellitus, sepsis, uveitis, and osteoarthritis.
Collapse
Affiliation(s)
- Wenyi Guo
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shihong Chen
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengqing Li
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Shandong University, China
| |
Collapse
|
3
|
Goto R, Yamada S, Otake H, Nakazawa Y, Oka M, Yamamoto N, Sasaki H, Nagai N. Instillation of Ophthalmic Formulation Containing Nilvadipine Nanocrystals Attenuates Lens Opacification in Shumiya Cataract Rats. Pharmaceutics 2021; 13:pharmaceutics13121999. [PMID: 34959281 PMCID: PMC8709220 DOI: 10.3390/pharmaceutics13121999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
We developed ophthalmic formulations based on nilvadipine (NIL) nanocrystals (NIL-NP dispersions; mean particle size: 98 nm) by using bead mill treatment and investigated whether the instillation of NIL-NP dispersions delivers NIL to the lens and prevents lens opacification in hereditary cataractous Shumiya cataract rats (SCRs). Serious corneal stimulation was not detected in either human corneal epithelial cells or rats treated with NIL-NP dispersions. The NIL was directly delivered to the lens by the instillation of NIL-NP dispersions, and NIL content in the lenses of rats instilled with NIL-NP dispersions was significantly higher than that in the ophthalmic formulations based on NIL microcrystals (NIL-MP dispersions; mean particle size: 21 µm). Moreover, the supply of NIL prevented increases in Ca2+ content and calpain activity in the lenses of SCRs and delayed the onset of cataracts. In addition, the anti-cataract effect in the lens of rats instilled with NIL-NP dispersions was also significantly higher than that in NIL-MP dispersions. NIL-NPs could be used to prevent lens opacification.
Collapse
Affiliation(s)
- Ryoka Goto
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (R.G.); (S.Y.); (H.O.)
| | - Shigehiro Yamada
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (R.G.); (S.Y.); (H.O.)
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (R.G.); (S.Y.); (H.O.)
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| | - Mikako Oka
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan;
| | - Naoki Yamamoto
- Center for Clinical Trial and Research Support, Fujita Health University, Research Promotion and Support Headquarters, Toyoake 470-1192, Aichi, Japan;
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan;
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (R.G.); (S.Y.); (H.O.)
- Correspondence: ; Tel.: +81-6-4307-3638
| |
Collapse
|
4
|
Serum Aβ Levels are Associated with Age-related Cataract. Neurotox Res 2021; 39:369-377. [PMID: 33400179 DOI: 10.1007/s12640-020-00325-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
To investigate the levels and clinical relevance of serum β-amyloid (Aβ) in age-related cataract (ARC) patients. In the present study, an overall of 402 ARC patients and 450 normal controls were recruited between June 2018 and December 2019. Serum Aβ1-40 and Aβ1-42 concentrations were assessed by Elisa. The ARC patients were further grouped into several subgroups according to gender, age, types of ARC, and degree of lens opacity. The association of Aβ levels with ARC was determined using logistic regression models. ARC patients had significantly higher serum Aβ1-40 and Aβ1-42 levels than normal control. A similar finding was observed in subjects aged over 60 years. Serum Aβ concentrations were significant correlated with the degrees of lens opacity in C-ARC and N-ARC subjects. Logistic regression analyses revealed that serum Aβ1-40 (ORs = 1.202, 95% CI 1.077 to 1.341) and Aβ1-42 (ORs = 1.686, 95% CI 1.351 to 2.103) levels were potential risk factors for ARC. ARC patients have higher serum Aβ1-40, as well as Aβ1-42 levels, which may reflect an association between Aβ and ARC pathogenesis. Serum Aβ1-42 and Aβ1-40 levels are potential risk factors for ARC.
Collapse
|
5
|
In Situ Gel Incorporating Disulfiram Nanoparticles Rescues the Retinal Dysfunction via ATP Collapse in Otsuka Long-Evans Tokushima Fatty Rats. Cells 2020; 9:cells9102171. [PMID: 32993012 PMCID: PMC7601925 DOI: 10.3390/cells9102171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
We attempted to design an ophthalmic in situ gel formulation incorporating disulfiram (DIS) nanoparticles (Dis-NPs/ISG) and demonstrated the therapeutic effect of Dis-NPs/ISG on retinal dysfunction in 15-month-old Otsuka Long–Evans Tokushima Fatty (OLETF) rats, a rat model of diabetes. The DIS particles were crushed using a bead mill to prepare the nanoparticles, and the Dis-NPs/ISG was prepared using a combination of the DIS nanoparticles and an in situ gelling system based on methylcellulose (MC). The particle size of the Dis-NPs/ISG was 80–250 nm, and there was no detectable precipitation or aggregation for 1 month. Moreover, the Dis-NPs/ISG was gelled at 37 °C, and the drug was delivered into the retina by instillation. Only diethyldithiocarbamate (DDC) was detected in the retina (DIS was not detected) when the Dis-NPs/ISG was instilled in the right eye, and the DDC levels in the right retina were significantly higher than those in the left retina. In addition, the retinal residence time of the drug was prolonged by the application of the in situ gelling system, since the DDC levels in the retinas of rats instilled with Dis-NPs/ISG were higher than those in DIS nanoparticles without MC. Furthermore, repetitive instillation of the Dis-NPs/ISG attenuated the deterioration of electroretinograms (ERGs) in 15-month-old OLETF rats by preventing the collapse of ATP production via excessive nitric oxide and recovered the decrease in retinal function. These findings provide important information for the development of novel therapeutic approaches to diabetic retinopathy.
Collapse
|
6
|
Mano Y, Otake H, Shibata T, Kubo E, Sasaki H, Nagai N. Enhancement of Amyloid β 1-43 Production in the Lens Epithelium of Japanese Type 2 Diabetic Patients. Biomedicines 2020; 8:biomedicines8040087. [PMID: 32294928 PMCID: PMC7235728 DOI: 10.3390/biomedicines8040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 11/18/2022] Open
Abstract
We investigated whether the accumulation of amyloid β-protein (Aβ) is enhanced in the lenses of diabetic patients. Lens epithelium samples were collected from Japanese patients during cataract surgery, and the Aβ levels and gene expression of Aβ-producing and -degrading enzymes in the samples were measured by ELISA and real-time RT-PCR, respectively. The Aβ1–43 levels in lenses of non-diabetic patients were low (0.11 pmol/g protein), while the levels in lenses of diabetic patients were significantly (6-fold) higher. Moreover, the Aβ1–43/total-Aβ ratio in the lenses of diabetic patients was also significantly higher than non-diabetic patients (p < 0.05). In addition, the mRNA levels for Aβ-producing enzymes were also enhanced in the lenses of diabetic patients. In contrast to the results for Aβ-producing enzymes, the mRNAs for the Aβ-degrading enzymes in the lenses of diabetic patients were significantly lower than in non-diabetic patients (p < 0.05). Furthermore, Aβ1–43/total-Aβ ratio in lenses was found to increase with plasma glucose level. In conclusion, these results suggest that high glucose levels cause both an increase in Aβ production and a decrease in Aβ degradation, and these changes lead to the enhancement in Aβ1–43 accumulation in the lenses of diabetic patients. These findings are useful for developing therapies for diabetic cataracts and for developing anti-cataract drugs.
Collapse
Affiliation(s)
- Yu Mano
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.M.); (H.O.)
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.M.); (H.O.)
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan; (T.S.); (E.K.); (H.S.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan; (T.S.); (E.K.); (H.S.)
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan; (T.S.); (E.K.); (H.S.)
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.M.); (H.O.)
- Correspondence: ; Tel.: +81-6-4307-3638
| |
Collapse
|
7
|
Zych M, Wojnar W, Dudek S, Kaczmarczyk-Sedlak I. Rosmarinic and Sinapic Acids May Increase the Content of Reduced Glutathione in the Lenses of Estrogen-Deficient Rats. Nutrients 2019; 11:E803. [PMID: 30970573 PMCID: PMC6521282 DOI: 10.3390/nu11040803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is believed to be associated with both postmenopausal disorders and cataract development. Previously, we have demonstrated that rosmarinic and sinapic acids, which are diet-derived antioxidative phenolic acids, counteracted some disorders induced by estrogen deficiency. Other studies have shown that some phenolic acids may reduce cataract development in various animal models. However, there is no data on the effect of phenolic acids on oxidative stress markers in the lenses of estrogen-deficient rats. The study aimed to investigate whether administration of rosmarinic acid and sinapic acid affects the antioxidative abilities and oxidative damage parameters in the lenses of estrogen-deficient rats. The study was conducted on three-month-old female Wistar rats. The ovariectomized rats were orally treated with rosmarinic acid at doses of 10 and 50 mg/kg or sinapic acid at doses of 5 and 25 mg/kg, for 4 weeks. The content of reduced glutathione (GSH), oxidized glutathione and amyloid β1-42, as well as products of protein and lipid oxidation, were assessed. Moreover, the activities of superoxide dismutase, catalase, and some glutathione-related enzymes in the lenses were determined. Rosmarinic and sinapic acids in both doses resulted in an increase in the GSH content and glutathione reductase activity. They also improved parameters connected with protein oxidation. Since GSH plays an important role in maintaining the lens transparency, the increase in GSH content in lenses after the use of rosmarinic and sinapic acids seems to be beneficial. Therefore, both the investigated dietary compounds may be helpful in preventing cataract.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Weronika Wojnar
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Sławomir Dudek
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
8
|
Oxidative Damages to Eye Stem Cells, in Response to, Bright and Ultraviolet Light, Their Associated Mechanisms, and Salvage Pathways. Mol Biotechnol 2018; 61:145-152. [DOI: 10.1007/s12033-018-0136-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Chemerovski-Glikman M, Mimouni M, Dagan Y, Haj E, Vainer I, Allon R, Blumenthal EZ, Adler-Abramovich L, Segal D, Gazit E, Zayit-Soudry S. Rosmarinic Acid Restores Complete Transparency of Sonicated Human Cataract Ex Vivo and Delays Cataract Formation In Vivo. Sci Rep 2018; 8:9341. [PMID: 29921877 PMCID: PMC6008418 DOI: 10.1038/s41598-018-27516-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
Cataract, the leading cause of vision impairment worldwide, arises from abnormal aggregation of crystallin lens proteins. Presently, surgical removal is the only therapeutic approach. Recent findings have triggered renewed interest in development of non-surgical treatment alternatives. However, emerging treatments are yet to achieve full and consistent lens clearance. Here, the first ex vivo assay to screen for drug candidates that reduce human lenticular protein aggregation was developed. This assay allowed the identification of two leading compounds as facilitating the restoration of nearly-complete transparency of phacoemulsified cataractous preparation ex vivo. Mechanistic studies demonstrated that both compounds reduce cataract microparticle size and modify their amyloid-like features. In vivo studies confirmed that the lead compound, rosmarinic acid, delays cataract formation and reduces the severity of lens opacification in model rats. Thus, the ex vivo assay may provide an initial platform for broad screening of potential novel therapeutic agents towards pharmacological treatment of cataract.
Collapse
Affiliation(s)
- Marina Chemerovski-Glikman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Michael Mimouni
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Yarden Dagan
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Esraa Haj
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Igor Vainer
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Raviv Allon
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Eytan Z Blumenthal
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
- Sagol Interdisciplinary School of Neurosciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel.
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Shiri Zayit-Soudry
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
10
|
Reinhardt S, Stoye N, Luderer M, Kiefer F, Schmitt U, Lieb K, Endres K. Identification of disulfiram as a secretase-modulating compound with beneficial effects on Alzheimer's disease hallmarks. Sci Rep 2018; 8:1329. [PMID: 29358714 PMCID: PMC5778060 DOI: 10.1038/s41598-018-19577-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
ADAM10 is a metalloproteinase acting on the amyloid precursor protein (APP) as an alpha-secretase in neurons. Its enzymatic activity results in secretion of a neuroprotective APP cleavage product (sAPP-alpha) and prevents formation of the amyloidogenic A-beta peptides, major hallmarks of Alzheimer’s disease (AD). Elevated ADAM10 levels appeared to contribute to attenuation of A-beta-plaque formation and learning and memory deficits in AD mouse models. Therefore, it has been assumed that ADAM10 might represent a valuable target in AD therapy. Here we screened a FDA-approved drug library and identified disulfiram as a novel ADAM10 gene expression enhancer. Disulfiram increased ADAM10 production as well as sAPP-alpha in SH-SY5Y human neuronal cells and additionally prevented A-beta aggregation in an in vitro assay in a dose-dependent fashion. In addition, acute disulfiram treatment of Alzheimer model mice induced ADAM10 expression in peripheral blood cells, reduced plaque-burden in the dentate gyrus and ameliorated behavioral deficits. Alcohol-dependent patients are subjected to disulfiram-treatment to discourage alcohol-consumption. In such patients, enhancement of ADAM10 by disulfiram-treatment was demonstrated in peripheral blood cells. Our data suggest that disulfiram could be repurposed as an ADAM10 enhancer and AD therapeutic. However, efficacy and safety has to be analyzed in Alzheimer patients in the future.
Collapse
Affiliation(s)
- Sven Reinhardt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nicolai Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mathias Luderer
- Central Institute of Mental Health (CIMH), Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Falk Kiefer
- Central Institute of Mental Health (CIMH), Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrich Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
11
|
Ferulic Acid Suppresses Amyloid β Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5343010. [PMID: 28409157 PMCID: PMC5376927 DOI: 10.1155/2017/5343010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/13/2017] [Accepted: 02/26/2017] [Indexed: 01/03/2023]
Abstract
It is well known that oxidative stresses induce the production of amyloid β (Aβ) in the brain, lens, and retina, leading to age-related diseases. In the present study, we investigated the effects of ferulic acid on the Aβ levels in H2O2-stimulated human lens epithelial (HLE) SRA 01/04 cells. Three types of Aβ peptides (Aβ1-40, Aβ1-42, and Aβ1-43) were measured by ELISA, and the levels of mRNA for the expressed proteins related to Aβ production (APP, BACE1, and PS proteins) and degradation (ADAM10, NEP, and ECE1 proteins) were determined by quantitative real-time RT-PCR. H2O2 stimulation augmented gene expression of the proteins related to Aβ production, resulting in the production of three types of Aβ peptides. Treatment with 0.1 μM ferulic acid attenuated the augmentations of gene expression and production of the proteins related to the secretion of three types of Aβ peptides in the H2O2-stimulated HLE cells. These results provided evidence of antioxidative functions of ferulic acid for lens epithelial cells.
Collapse
|
12
|
Nagai N, Ito Y, Shibata T, Kubo E, Sasaki H. A positive feedback loop between nitric oxide and amyloid β (1-42) accelerates mitochondrial damage in human lens epithelial cells. Toxicology 2017; 381:19-30. [PMID: 28242320 DOI: 10.1016/j.tox.2017.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 02/03/2023]
Abstract
We have reported that excessive nitric oxide (NO), like other reactive oxygen species (ROS), causes a decrease in cytochrome c oxidase (CCO) activity and ATP levels (mitochondrial damage) resulting in lens opacity. In addition, previous reports have shown that oxidative stress caused by ROS enhances amyloid β (Aβ) production in mammalian lenses, and that Aβ1-42 stimulates inducible nitric oxide synthase (iNOS) promoter activity. Based on these reports, we investigated the relationship between NO and Aβ1-42 production in human lens epithelial (HLE) cells. iNOS was induced by the co-incubation of HLE cells with 1000 IU interferon-γ (IFN-γ) and 100ng/ml lipopolysaccharide (LPS) for 48h. This led to enhanced NO release, an increase in the gene expression levels of proteins related to Aβ production, and the cellular accumulation of Aβ1-42. Moreover, both aminoguanidine (AG, a selective inhibitor of iNOS) and diethyldithiocarbamate (DDC, a nuclear factor-kappa B (NFκB) inhibitor) attenuated these changes in IFN-γ and LPS stimulated HLE cells. Based on our finding that Aβ1-42 accumulation is induced by co-incubation of HLE cells with both IFN-γ and LPS, we prepared a HLE cell model with Aβ1-42 accumulation (Aβ-accumulated-HLE cell model) by pre-stimulating cells with IFN-γ and LPS for 48h. Aβ1-42 accumulation caused NO production via iNOS, resulting in an enhancement in the mRNA levels for enzymes necessary for the proteolysis of amyloid precursor protein (APP) to Aβ in HLE cells. In addition, excessive NO produced in response to Aβ1-42 accumulation led to a decrease in CCO activity and ATP levels. Taken together, we hypothesize that excessive NO production in the lens epithelium enhances Aβ1-42 production, and that this enhancement accelerates NO release. The enhancement in NO production in the lens epithelium based on positive feedback (NO-Aβ positive feedback loop, a vicious cycle) may promote the onset of cataracts (lens opacification) via the decrease in CCO activity and ATP levels. These findings provide significant information that can be used to design further studies aimed at developing anti-cataract drugs.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Yoshimasa Ito
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| |
Collapse
|
13
|
Nagai N, Ogata F, Kawasaki N, Ito Y. Increased Expression of Interleukin-18 in Lenses of Ovariectomized Rats. Biol Pharm Bull 2016; 39:138-42. [PMID: 26725437 DOI: 10.1248/bpb.b15-00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies showed an increased prevalence of cataracts in postmenopausal women. In this study, we investigated changes in the levels of calcium ion (Ca(2+)) and interleukin (IL)-18, which are factors in cataract development, in the lenses of ovariectomized (OVX) rats, a model of postmenopausal woman. Although the Ca(2+) content in the blood of OVX rats increased 1 month after ovariectomy and subsequently decreased, the Ca(2+) content in the lenses was unchanged in OVX rats 1-3 months after ovariectomy. The Ca(2+)-ATPase activity in the lenses of OVX rats peaked 1 month after ovariectomy, and the behavior of Ca(2+)-ATPase activity in lenses of OVX rats was similar to that of the Ca(2+) concentration in the blood. It is possible that hypercalcemia increases the Ca(2+) inflow into the lens; however, the enhanced Ca(2+)-ATPase activity prevents the Ca(2+) level from rising. On the other hand, we found that the levels of both IL-18 and interferon (IFN)-γ in the lenses of OVX rats were significantly increased as compared with the lenses of sham (control) rats during the period 1-3 months after surgery. These results suggest that the expression of IFN-γ via IL-18 in the lenses of OVX rats is induced by ovariectomy, and that excessive IL-18 and IFN-γ production in the lenses may be related to cataract development in postmenopausal women. These findings support those of previous studies that assessed lens opacification in postmenopausal women.
Collapse
|
14
|
Nagai N, Yoshioka C, Mano Y, Tnabe W, Ito Y, Okamoto N, Shimomura Y. A nanoparticle formulation of disulfiram prolongs corneal residence time of the drug and reduces intraocular pressure. Exp Eye Res 2015; 132:115-23. [PMID: 25633346 DOI: 10.1016/j.exer.2015.01.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/04/2014] [Accepted: 01/24/2015] [Indexed: 11/30/2022]
Abstract
The goal in the search for successful therapies for glaucoma is the reduction of intraocular pressure (IOP), and the search for effective eye drops that reduce IOP is a high priority. We previously reported the potential of a 2-hydroxypropyl-β-cyclodextrin (HPβCD) solution containing 0.5% DSF (DSF solution) to provide effective anti-glaucoma treatment in eye drop form. In this study, we designed new ophthalmic formulations containing 0.5% DSF nanoparticles prepared by a bead mill method (DSFnano dispersion; particle size 183 ± 92 nm, mean ± S.D.), and compared the IOP-reducing effects of a DSFnano dispersion with those of a DSF solution. The high stability of the DSFnano dispersion was observed until 7 days after preparation, and the DSFnano dispersion showed high antimicrobial activity against Escherichia coli (ATCC 8739). In transcorneal penetration experiments using rabbit corneas, only diethyldithiocarbamate (DDC) was detected in the aqueous humor, while no DSF was detected. The DDC penetration level (area under the curve, AUC) and corneal residence time (mean residence time, MRT) of the DSFnano dispersion were approximately 1.45- and 1.44-fold higher than those of the DSF, respectively. Moreover, the IOP-reducing effects of the DSFnano dispersion were significantly greater than those of the DSF solution in rabbits (the IOP was enhanced by placing the rabbits in a dark room for 5 h). In addition, DSFnano dispersion are tolerated better by a corneal epithelial cell than DSF solution and commercially available timolol maleate eye drops. It is possible that dispersions containing DSF nanoparticles will provide new possibilities for the effective treatment of glaucoma, and that an ocular drug delivery system using drug nanoparticles may expand their usage as therapy in the ophthalmologic field. These findings provide significant information that can be used to design further studies aimed at developing anti-glaucoma drugs.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Chiaki Yoshioka
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yu Mano
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Wataru Tnabe
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshimasa Ito
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Norio Okamoto
- Department of Ophthalmology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yoshikazu Shimomura
- Department of Ophthalmology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
15
|
Nagai N, Ito Y, Tanino T. Effect of High Glucose Levels on Amyloid β Production in Retinas of Spontaneous Diabetes Mellitus Otsuka Long-Evans Tokushima Fatty Rats. Biol Pharm Bull 2015; 38:601-10. [DOI: 10.1248/bpb.b14-00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Garcimartín A, Merino JJ, González MP, Sánchez-Reus MI, Sánchez-Muniz FJ, Bastida S, Benedí J. Organic silicon protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide effects. Altern Ther Health Med 2014; 14:384. [PMID: 25293674 PMCID: PMC4203892 DOI: 10.1186/1472-6882-14-384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022]
Abstract
Background Hydrogen peroxide (H2O2) is a toxic agent that induces oxidative stress and cell death. Silicon (Si) is a biological element involved in limiting aluminium (Al) absorption with possible preventive effects in Alzheimer’s disease. However, Si has not yet been associated with other neuroprotective mechanisms. Methods The present experiments evaluated in the SH-SY5Y human neuroblastoma cell line the possible role of different Si G5 (50-1000 ng/mL) concentrations in preventing cellular death induced by H2O2 (400 μM, 24 hours). Results Our findings showed that H2O2 promoted cell death in the human SH-SY5Y cell cultures and this could be prevented by Si treatment. The loss in cell viability mediated by H2O2 was due to an apoptotic and necrotic process. Apoptotic death was incurred by regulating caspase-8 activity in the extrinsic pathway. The apoptotic and necrotic cell death induced by H2O2 was almost totally reversed by Si (50-500 ng/mL), indicating that it down-regulates both processes in H2O2 treated cells. Conclusions According to our data, Si is able to increase SH-SY5Y cell survival throughout partially blocking cellular damage related to oxidative stress through a mechanism that would affect H2O2/ROS elimination.
Collapse
|
17
|
Hamada N, Fujimichi Y, Iwasaki T, Fujii N, Furuhashi M, Kubo E, Minamino T, Nomura T, Sato H. Emerging issues in radiogenic cataracts and cardiovascular disease. JOURNAL OF RADIATION RESEARCH 2014; 55:831-46. [PMID: 24824673 PMCID: PMC4202294 DOI: 10.1093/jrr/rru036] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/01/2014] [Accepted: 04/06/2014] [Indexed: 05/26/2023]
Abstract
In 2011, the International Commission on Radiological Protection issued a statement on tissue reactions (formerly termed non-stochastic or deterministic effects) to recommend lowering the threshold for cataracts and the occupational equivalent dose limit for the crystalline lens of the eye. Furthermore, this statement was the first to list circulatory disease (cardiovascular and cerebrovascular disease) as a health hazard of radiation exposure and to assign its threshold for the heart and brain. These changes have stimulated various discussions and may have impacts on some radiation workers, such as those in the medical sector. This paper considers emerging issues associated with cataracts and cardiovascular disease. For cataracts, topics dealt with herein include (i) the progressive nature, stochastic nature, target cells and trigger events of lens opacification, (ii) roles of lens protein denaturation, oxidative stress, calcium ions, tumor suppressors and DNA repair factors in cataractogenesis, (iii) dose rate effect, radiation weighting factor, and classification systems for cataracts, and (iv) estimation of the lens dose in clinical settings. Topics for cardiovascular disease include experimental animal models, relevant surrogate markers, latency period, target tissues, and roles of inflammation and cellular senescence. Future research needs are also discussed.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Yuki Fujimichi
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Noriko Fujii
- Kyoto University Research Reactor Institute (KURRI), 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku, Kahoku, Ishikawa 920-0293, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-754 Asahimachidori, Chuo-ku, Niigata 951-8510, Japan
| | - Takaharu Nomura
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Hitoshi Sato
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki, Ibaraki 300-0394, Japan
| |
Collapse
|