1
|
Pince CL, Whiting KE, Wang T, Lékó AH, Farinelli LA, Cooper D, Farokhnia M, Vendruscolo LF, Leggio L. Role of aldosterone and mineralocorticoid receptor (MR) in addiction: A scoping review. Neurosci Biobehav Rev 2023; 154:105427. [PMID: 37858908 PMCID: PMC10865927 DOI: 10.1016/j.neubiorev.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Preclinical and human studies suggest a role of aldosterone and mineralocorticoid receptor (MR) in addiction. This scoping review aimed to summarize (1) the relationship between alcohol and other substance use disorders (ASUDs) and dysfunctions of the aldosterone and MR, and (2) how pharmacological manipulations of MR may affect ASUD-related outcomes. Our search in four databases (MEDLINE, Embase, Web of Science, and Cochrane Library) indicated that most studies focused on the relationship between aldosterone, MR, and alcohol (n = 30), with the rest focused on opioids (n = 5), nicotine (n = 9), and other addictive substances (n = 9). Despite some inconsistencies, the overall results suggest peripheral and central dysregulations of aldosterone and MR in several species and that these dysregulations depended on the pattern of drug exposure and genetic factors. We conclude that MR antagonism may be a promising target in ASUD, yet future studies are warranted.
Collapse
Affiliation(s)
- Claire L Pince
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Kimberly E Whiting
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Tammy Wang
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - András H Lékó
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa A Farinelli
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Diane Cooper
- Office of Research Services, Division of Library Services, National Institutes of Health, Building 10, Bethesda, MD 20892, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
2
|
Baidoo N, Wolter M, Leri F. Opioid withdrawal and memory consolidation. Neurosci Biobehav Rev 2020; 114:16-24. [PMID: 32294487 DOI: 10.1016/j.neubiorev.2020.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
It is well established that learning and memory are central to substance dependence. This paper specifically reviews the effect of opioid withdrawal on memory consolidation. Although there is evidence that opioid withdrawal can interfere with initial acquisition and retrieval of older memories, there are several reasons to postulate a facilitatory action on the consolidation of newly acquired memories. In fact, there is substantial evidence that memory consolidation is facilitated by the release of stress hormones, that it requires the activation of the amygdala, of central noradrenergic and cholinergic pathways, and that it involves long-term potentiation. This review highlights evidence that very similar neurobiological processes are involved in opioid withdrawal, and summarizes recent results indicating that naltrexone-precipitated withdrawal enhanced consolidation in rats. From this neurocognitive perspective, therefore, opioid use may escalate during the addiction cycle in part because memories of stimuli and actions experienced during withdrawal are strengthened.
Collapse
Affiliation(s)
- Nana Baidoo
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada
| | - Michael Wolter
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada
| | - Francesco Leri
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Rosa HZ, Barcelos RCS, Segat HJ, Roversi K, Dias VT, Milanesi LH, Burger ME. Physical exercise modifies behavioral and molecular parameters related to opioid addiction regardless of training time. Eur Neuropsychopharmacol 2020; 32:25-35. [PMID: 31899030 DOI: 10.1016/j.euroneuro.2019.12.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022]
Abstract
Addiction is a devastating worldwide disorder that requires effective and innovative therapies. Physical exercise could be useful in addiction treatment because it shares a common neural circuit with addictive drugs. Based on this, molecular adaptations consequent to time of exercise in opioid exposed animals were evaluated. Rats were designed as sedentary (SED) or exercised (EXE). This last group was separated to perform three different periods of swimming: short-term (S-EXE), medium-term (M-EXE) and long-term (L-EXE) for 14, 28 and 42 days, respectively. On the last exercising week, one-half of the animals from SED and all animals from S-, M- and l-EXE were concomitantly exposed to morphine-conditioned place preference (CPP) paradigm and y-maze task for behavioral assessments followed by molecular assays in both Nucleus accumbens (NAc) and hippocampus. Between SED groups, morphine conditioning showed drug-CPP and increased dopamine transporter (DAT), dopamine receptor type-1 (D1R), type-2 (D2R) and glucocorticoid receptor (GR) in both brain areas in relation to saline group. Besides the small morphine-CPP in relation to SED group, all periods decreased DAT, D1R, and GR immunoreactivity in NAc, DAT and D1R in hippocampus, while D2R in both brain areas and GR in hippocampus were primarily decreased by L-EXE. Our findings show that even a short-term exercise modifies behaviors related to drug withdrawal, changing DA targets and GR, which are closely linked to addiction. Therefore, our outcomes involving physical exercise are interesting to perform a possible clinical trial, thus expanding the knowledge about drug addiction.
Collapse
Affiliation(s)
- H Z Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - R C S Barcelos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - H J Segat
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Kr Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - V T Dias
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - L H Milanesi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - M E Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Chen J, Wang ZZ, Zhang S, Chu SF, Mou Z, Chen NH. The effects of glucocorticoids on depressive and anxiety-like behaviors, mineralocorticoid receptor-dependent cell proliferation regulates anxiety-like behaviors. Behav Brain Res 2019; 362:288-298. [DOI: 10.1016/j.bbr.2019.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/31/2022]
|
5
|
Solecki WB, Kus N, Gralec K, Klasa A, Pradel K, Przewłocki R. Noradrenergic and corticosteroid receptors regulate somatic and motivational symptoms of morphine withdrawal. Behav Brain Res 2019; 360:146-157. [DOI: 10.1016/j.bbr.2018.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/28/2018] [Accepted: 11/26/2018] [Indexed: 01/25/2023]
|
6
|
Vázquez López JL, Schild L, Günther T, Schulz S, Neurath H, Becker A. The effects of kratom on restraint-stress-induced analgesia and its mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:178-185. [PMID: 28501425 DOI: 10.1016/j.jep.2017.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mitragyna speciosa and its extracts are called kratom (dried leaves, extract). They contain several alkaloids with an affinity for different opioid receptors. They are used in traditional medicine for the treatment of different diseases, as a substitute by opiate addicts, and to mitigate opioid withdrawal symptoms. Apart from their medical properties, they are used to enhance physical endurance and as a means of overcoming stress. PURPOSE The aim of this study was to determine the mechanisms underlying the effects of kratom on restraint-stress-induced analgesia which occurs during or following exposure to a stressful or fearful stimulus. METHODS To gain further insights into the action of kratom on stress, we conducted experiments using restraint stress as a test system and stress-induced analgesia as a test parameter. Using transgenic mu opioid-receptor (MOR) deficient mice, we studied the involvement of this receptor type. We used nor-binaltorphimine (BNT), an antagonist at kappa opioid receptors (KOR), to study functions of this type of receptor. Membrane potential assay was also employed to measure the intrinsic activity of kratom in comparison to U50,488, a highly selective kappa agonist. RESULTS Treatment with kratom diminished stress-induced analgesia in wildtype and MOR knockout animals. Pretreatment of MOR deficient mice with BNT resulted in similar effects. In comparison to U50,488, kratom exhibited negligible intrinsic activity at KOR alone. CONCLUSIONS The results suggest that the use of kratom as a pharmacological tool to mitigate withdrawal symptoms is related to its action on KOR.
Collapse
Affiliation(s)
- José Luis Vázquez López
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lorenz Schild
- Otto-von-Guericke-University, Faculty of Medicine, Department of Pathobiochemistry, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Thomas Günther
- Friedrich Schiller University Jena, Jena University Hospital, Institute of Pharmacology and Toxicology, Drackendorfer Str. 1, 07747 Jena, Germany
| | - Stefan Schulz
- Friedrich Schiller University Jena, Jena University Hospital, Institute of Pharmacology and Toxicology, Drackendorfer Str. 1, 07747 Jena, Germany
| | - Hartmud Neurath
- Center of Pharmacology and Toxicology, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Axel Becker
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
7
|
Navarro-Zaragoza J, Laorden ML, Milanés MV. Glucocorticoid receptor but not mineralocorticoid receptor mediates the activation of ERK pathway and CREB during morphine withdrawal. Addict Biol 2017; 22:342-353. [PMID: 26598419 DOI: 10.1111/adb.12328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/19/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023]
Abstract
Recent research suggests that glucocorticoids are involved in the development of addiction to drugs of abuse. They share this role with dopamine (DA), and with different signalling pathways and/or transcription factors such as extracellular-signal regulated kinases (ERK) and cAMP response element binding protein (CREB). However, the relation between them is not completely elucidated. In this report, we further characterize the role of glucocorticoid and mineralocorticoid receptor (GR and MR) signalling in DA turnover at the Nacc, and in opiate withdrawal-induced tyrosine hydroxylase (TH) expression, ERK and CREB phosphorylation (activation) in the nucleus of tractus solitarius (NTS-A2 ). The role of GR and MR signalling was assessed with the selective GR antagonist, mifepristone or the MR antagonist, spironolactone (i.p.). Rats were implanted two morphine (or placebo) pellets. Six days later rats were pretreated with mifepristone, spironolactone or vehicle 30 min before naloxone, and DA turnover, TH expression, ERK and CREB phosphorylation, were measured using HPLC and immunoblotting. Glucocorticoid receptor blockade attenuated ERK and CREB phosphorylation and the TH expression induced by morphine withdrawal. In contrast, no changes were seen after MR blockade. Finally, GR and MR blockade did not alter the morphine withdrawal-induced increase seen both in DA turnover and DA metabolite production, in the NAcc. These results show that not only ERK and CREB phosphorylation but also TH expression in the NTS is modulated by GR signalling. The present results suggest that GR is a therapeutic target to improve aversive events associated with opiate withdrawal.
Collapse
Affiliation(s)
- Javier Navarro-Zaragoza
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine; University of Murcia; Murcia Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB); Murcia Spain
| | - M. Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine; University of Murcia; Murcia Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB); Murcia Spain
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine; University of Murcia; Murcia Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB); Murcia Spain
| |
Collapse
|
8
|
Fox ME, Rodeberg NT, Wightman RM. Reciprocal Catecholamine Changes during Opiate Exposure and Withdrawal. Neuropsychopharmacology 2017; 42:671-681. [PMID: 27461081 PMCID: PMC5240169 DOI: 10.1038/npp.2016.135] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 11/09/2022]
Abstract
Dysregulated catecholamine signaling has long been implicated in drug abuse. Although much is known about adaptations following chronic drug administration, little work has investigated how a single drug exposure paired with withdrawal influences catecholamine signaling in vivo. We used fast-scan cyclic voltammetry in freely moving rats to measure real-time catecholamine overflow during acute morphine exposure and naloxone-precipitated withdrawal in two regions associated with the addiction cycle: the dopamine-dense nucleus accumbens (NAc) and norepinephrine-rich ventral bed nucleus of the stria terminalis (vBNST). We compared dopamine transients in the NAc with norepinephrine concentration changes in the vBNST, and correlated release with specific withdrawal-related behaviors. Morphine increased dopamine transients in the NAc, but did not elicit norepinephrine responses in the vBNST. Conversely, dopamine output was decreased during withdrawal, while norepinephrine was released in the vBNST during specific withdrawal symptoms. Both norepinephrine and withdrawal symptoms could be elicited in the absence of morphine by administering naloxone with an α2 antagonist. The data support reciprocal roles for dopamine and norepinephrine signaling during drug exposure and withdrawal. The data also support the allostasis model and show that negative-reinforcement may begin working after a single exposure/withdrawal episode.
Collapse
Affiliation(s)
- Megan E Fox
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nathan T Rodeberg
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - R Mark Wightman
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA,Department of Chemistry and Neuroscience Center, University of North Carolina, Venable Hall, South Road, Chapel Hill, NC 27599, USA, Tel: +1 919 9621472, Fax: +1 919 962 2388, E-mail:
| |
Collapse
|
9
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|