1
|
Böttcher B, Pflieger A, Schumacher J, Jungnickel B, Feller KH. 3D Bioprinting of Prevascularized Full-Thickness Gelatin-Alginate Structures with Embedded Co-Cultures. Bioengineering (Basel) 2022; 9:bioengineering9060242. [PMID: 35735485 PMCID: PMC9219913 DOI: 10.3390/bioengineering9060242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
The use of bioprinting allows the creation of complex three-dimensional cell laden grafts with spatial placements of different cell lines. However, a major challenge is insufficient nutrient transfer, especially with the increased size of the graft causing necrosis and reduced proliferation. A possibility to improve nutrient support is the integration of tubular structures for reducing diffusion paths. In this study the influence of prevascularization in full-thickness grafts on cell growth with a variation of cultivation style and cellular composition was investigated. To perform this, the rheological properties of the used gelatin-alginate hydrogel as well as possibilities to improve growth conditions in the hydrogel were assessed. Prevascularized grafts were manufactured using a pneumatic extrusion-based bioprinter with a coaxial extrusion tool. The prevascularized grafts were statically and dynamically cultured with a monoculture of HepG2 cells. Additionally, a co-culture of HepG2 cells, fibroblasts and HUVEC-TERT2 was created while HUVEC-TERT2s were concentrically placed around the hollow channels. A static culture of prevascularized grafts showed short-term improvements in cell proliferation compared to avascular grafts, while a perfusion-based culture showed improvements in mid-term cultivation times. The cultivation of the co-culture indicated the formation of vascular structures from the hollow channels toward avascular areas. According to these results, the integration of prevascular structures show beneficial effects for the in vitro cultivation of bioprinted grafts for which its impact can be increased in larger grafts.
Collapse
Affiliation(s)
- Bastian Böttcher
- Institute for Microsystem and Precision Engineering, Ernst-Abbe University of Applied Science Jena, 07745 Jena, Germany; (B.B.); (A.P.); (J.S.)
| | - Astrid Pflieger
- Institute for Microsystem and Precision Engineering, Ernst-Abbe University of Applied Science Jena, 07745 Jena, Germany; (B.B.); (A.P.); (J.S.)
| | - Jan Schumacher
- Institute for Microsystem and Precision Engineering, Ernst-Abbe University of Applied Science Jena, 07745 Jena, Germany; (B.B.); (A.P.); (J.S.)
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany;
| | - Karl-Heinz Feller
- Institute for Microsystem and Precision Engineering, Ernst-Abbe University of Applied Science Jena, 07745 Jena, Germany; (B.B.); (A.P.); (J.S.)
- Correspondence: ; Tel.: +49-3641-205-621
| |
Collapse
|
2
|
Kelly S, Byrne MH, Quinn SJ, Simpson JC. Multiparametric nanoparticle-induced toxicity readouts with single cell resolution in HepG2 multicellular tumour spheroids. NANOSCALE 2021; 13:17615-17628. [PMID: 34661590 DOI: 10.1039/d1nr04460e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of nanomaterials as therapeutic delivery vehicles requires their careful pre-clinical evaluation. Of particular importance in this regard is measurement of cellular toxicity, ideally assessing multiple parameters in parallel from various relevant subcellular organelles. In recent years it has become evident that in vitro monolayer-grown cells do not always accurately predict any toxicity response seen in vivo, and so there is a need for more sophisticated in vitro cell models, employing a greater depth of characterisation. In this work we present an automated high-content screening microscopy approach for quantifying nanoparticle-induced toxicity in a three-dimensional multicellular tumour spheroid (MCTS) cell model. As a proof-of-principle, we perform a comparative toxicity profile study of carboxylate- versus amine-modified polystyrene nanoparticles in HepG2 spheroids. Following treatment with these nanoparticle types, we demonstrate that several hundred spheroids, of various sizes, can be morphologically profiled in a single well using automated high-content image analysis. This provides a first level of information about spheroid health in response to nanoparticle treatment. Using a range of fluorescent reporters assessing membrane permeability, lysosome function and mitochondrial activity, we also show that nanoparticle-induced toxicity information can be obtained from individual cells with subcellular resolution. Strikingly, our work demonstrates that individual cells do not all behave in a consistent manner within a spheroid structure after exposure to nanoparticles. This highlights the need for toxicity studies to not only assess an appropriate number of spheroids, but also the importance of extracting information at the subcellular level.
Collapse
Affiliation(s)
- Suainibhe Kelly
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland.
| | - Maria H Byrne
- UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Susan J Quinn
- UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
3
|
Lu X, Ye Y, Zhang Y, Sun X. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 2020; 61:3819-3835. [PMID: 32885986 DOI: 10.1080/10408398.2020.1809341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
4
|
Garzón V, Pinacho DG, Bustos RH, Garzón G, Bustamante S. Optical Biosensors for Therapeutic Drug Monitoring. BIOSENSORS 2019; 9:E132. [PMID: 31718050 PMCID: PMC6955905 DOI: 10.3390/bios9040132] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Therapeutic drug monitoring (TDM) is a fundamental tool when administering drugs that have a limited dosage or high toxicity, which could endanger the lives of patients. To carry out this monitoring, one can use different biological fluids, including blood, plasma, serum, and urine, among others. The help of specialized methodologies for TDM will allow for the pharmacodynamic and pharmacokinetic analysis of drugs and help adjust the dose before or during their administration. Techniques that are more versatile and label free for the rapid quantification of drugs employ biosensors, devices that consist of one element for biological recognition coupled to a signal transducer. Among biosensors are those of the optical biosensor type, which have been used for the quantification of different molecules of clinical interest, such as antibiotics, anticonvulsants, anti-cancer drugs, and heart failure. This review presents an overview of TDM at the global level considering various aspects and clinical applications. In addition, we review the contributions of optical biosensors to TDM.
Collapse
Affiliation(s)
- Vivian Garzón
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía 140013, Colombia
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Daniel G. Pinacho
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Rosa-Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Gustavo Garzón
- Faculty of Medicine, Universidad de La Sabana, Chía 140013, Colombia
| | - Sandra Bustamante
- Physics Department, the Centre for NanoHealth, Swansea University, Swansea SA2 8PP, UK
- Vedas, Corporación de Investigación e Innovación, Medellín 050001, Colombia
| |
Collapse
|
5
|
Michelini E, Calabretta MM, Cevenini L, Lopreside A, Southworth T, Fontaine DM, Simoni P, Branchini BR, Roda A. Smartphone-based multicolor bioluminescent 3D spheroid biosensors for monitoring inflammatory activity. Biosens Bioelectron 2019; 123:269-277. [DOI: 10.1016/j.bios.2018.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/14/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022]
|
6
|
Eldridge BN, Xing F, Fahrenholtz CD, Singh RN. Evaluation of multiwalled carbon nanotube cytotoxicity in cultures of human brain microvascular endothelial cells grown on plastic or basement membrane. Toxicol In Vitro 2017; 41:223-231. [PMID: 28285150 DOI: 10.1016/j.tiv.2017.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 11/27/2022]
Abstract
There is a growing interest in the use of multiwalled carbon nanotubes (MWCNTs) to treat diseases of the brain. Little is known about the effects of MWCNTs on human brain microvascular endothelial cells (HBMECs), which make up the blood vessels in the brain. In our studies, we evaluate the cytotoxicity of MWCNTs and acid oxidized MWNCTs, with or without a phospholipid-polyethylene glycol coating. We determined the cytotoxic effects of MWCNTs on both tissue-mimicking cultures of HBMECs grown on basement membrane and on monolayer cultures of HBMECs grown on plastic. We also evaluated the effects of MWCNT exposure on the capacity of HBMECs to form rings after plating on basement membrane, a commonly used assay to evaluate angiogenesis. We show that tissue-mimicking cultures of HBMECs are less sensitive to all types of MWCNTs than monolayer cultures of HBMECs. Furthermore, we found that MWCNTs have little impact on the capacity of HBMECs to form rings. Our results indicate that relative cytotoxicity of MWCNTs is significantly affected by the type of cell culture model used for testing, and supports further research into the use of tissue-mimicking endothelial cell culture models to help bridge the gap between in vitro and in vivo toxicology.
Collapse
Affiliation(s)
- Brittany N Eldridge
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Cale D Fahrenholtz
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Ravi N Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; Comprehensive Cancer Center of Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|