1
|
Ren T, Lee PMY, Li F, Li J. Prenatal Carbamazepine Exposure and Academic Performance in Adolescents: A Population-Based Cohort Study. Neurology 2023; 100:e728-e738. [PMID: 36323520 PMCID: PMC9969917 DOI: 10.1212/wnl.0000000000201529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/21/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To investigate whether children born to mothers who used carbamazepine during pregnancy had worse academic performance in adolescence. METHODS This population-based cohort study included all live-born singletons in Denmark between 1996 and 2002 who participated in the national ninth-grade exit examination (n = 370,859). Those born to mothers with prescription of antiseizure medications other than carbamazepine during pregnancy were excluded. We examined the association of in utero exposure to maternal carbamazepine redeemed during pregnancy (n = 290) with academic performance of offspring, defined by the scores in Danish and mathematics in ninth-grade exit examination. We estimated mean z-score difference with linear regression adjusted for socioeconomic factors and potential indications, including epilepsy and medication for other psychiatric disorders. Additional analyses addressing confounding by indication included comparison between in utero exposed vs past exposed and between past exposed and never exposed. In utero exposure to valproate monotherapy was used as a positive control and in utero exposure to lamotrigine as a negative control. RESULTS At the age of 16.1 (SD 0.4) years, adolescents in utero exposed to maternal carbamazepine monotherapy had lower scores both in Danish and mathematics in ninth-grade exit examination (adjusted z-score difference, -0.14 [95% CI -0.24 to -0.05] and -0.17 [95% CI -0.28 to -0.07], respectively). In utero exposure to carbamazepine monotherapy was associated with lower scores than past exposure only (adjusted z-score difference, -0.24 [95% CI -0.41 to -0.06] for Danish and -0.25 [95% CI -0.44 to -0.06] for mathematics), while past exposure to carbamazepine was associated with minor decrease in offspring's academic performance (adjusted z-score difference, -0.02 [95% CI -0.09 to 0.06] for Danish and -0.07 [95% CI -0.16 to 0.01] for mathematics). The association was also observed for in utero exposure to valproate monotherapy, but not for in utero exposure to lamotrigine. DISCUSSION In utero exposure to carbamazepine was associated with poorer academic performance in adolescence, as represented by lower scores in ninth-grade exit examination in Danish and mathematics. Additional studies are needed to confirm these findings because of limitations in this study and variable findings in prior studies. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that academic performance, as reflected in ninth-grade exit examinations in Danish and mathematics, was worse among those exposed to carbamazepine monotherapy in utero, compared with those without in utero exposure to antiseizure medications.
Collapse
Affiliation(s)
| | | | - Fei Li
- From the Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health (T.R., F.L.), Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China; Department of Clinical Medicine-Department of Clinical Epidemiology (P.M.Y.L., J.L.), Aarhus University and Aarhus University Hospital, Denmark; and Department of Developmental and Behavioural Paediatric & Child Primary Care (F.L.), Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.
| | - Jiong Li
- From the Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health (T.R., F.L.), Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China; Department of Clinical Medicine-Department of Clinical Epidemiology (P.M.Y.L., J.L.), Aarhus University and Aarhus University Hospital, Denmark; and Department of Developmental and Behavioural Paediatric & Child Primary Care (F.L.), Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
2
|
Güler H, Esen EE, Balcıoğlu E, Göktepe Ö, Yılmaz H, Yay AH, Nisari M, Al Ö, Uçar S, Güçlü Ekinci HK, Tokpınar A, Yılmaz S. Bone development in offspring of pregnant rats treated with carbamazepine: Evaluation by three different methods. Epilepsia 2022; 63:3066-3077. [PMID: 36168801 DOI: 10.1111/epi.17422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study was carried out to determine the effect of intrauterine carbamazepine (CBZ) exposure on fetal bone development during pregnancy. METHODS In the study, 24 female Wistar pregnant rats were used. Rats were 20 weeks old. They had an average body weight of 150-200 g. Pregnant rats were randomly selected and divided (n = 6) into a control group, low-dose CBZ (10 mg/kg/day) group, medium-dose CBZ (25 mg/kg/day) group, and high-dose CBZ (50 mg/kg/day) group. The ossification length (mm) and ossification area (mm2 ) of the long bones of the fetuses in the experimental and control groups were calculated. The densities of alkaline phosphatase (AP) and tartrate-resistant acid phosphatase (TRAP) were analyzed. The ossification regions of the femurs of the fetuses were examined under a light microscope. Microstructural images of the femurs were evaluated with scanning electron microscope photographs. The densities of minerals involved in the ossification process were analyzed. RESULTS According to the results of the study, all three doses of CBZ caused loss of ossification areas, and it was observed that this bone loss also increased statistically significantly depending on the dose increase (p < .05). Calcium concentration decreased in the CBZ groups. When the electron microscope images were examined, it was determined that the cartilage matrix of the CBZ groups was thinned. In the histological evaluation of the groups, narrowing of the primary bone collar and smaller bone spicules in the ossification region compared to the control group were noted due to the increase in dose in the CBZ groups. In immunohistochemical staining, it was observed that the TRAP and AP expression values of the femurs were the lowest in the CBZ groups. These decreases were also statistically significant when compared with the control group. SIGNIFICANCE It was revealed with both microscopic and macroscopic findings that exposure to intrauterine CBZ negatively affected ossification and bone growth.
Collapse
Affiliation(s)
- Hatice Güler
- Basic Medical Sciences, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Eda Esra Esen
- Basic Medical Sciences, Department of Anatomy, Sütçü İmam University, Kahramanmaraş, Turkey
| | - Esra Balcıoğlu
- Basic Medical Sciences, Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Göktepe
- Basic Medical Sciences, Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Halil Yılmaz
- Basic Medical Sciences, Department of Anatomy, Ordu University, Ordu, Turkey
| | - Arzu Hanım Yay
- Basic Medical Sciences, Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehtap Nisari
- Basic Medical Sciences, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Al
- Basic Medical Sciences, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sümeyye Uçar
- Basic Medical Sciences, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hilal Kübra Güçlü Ekinci
- Basic Medical Sciences, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Adem Tokpınar
- Basic Medical Sciences, Department of Anatomy, Ordu University, Ordu, Turkey
| | - Seher Yılmaz
- Basic Medical Sciences, Department of Anatomy, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
3
|
Ahmed RG. Overdoses of Acetaminophen Disrupt the Thyroid-Liver Axis in Neonatal Rats. Endocr Metab Immune Disord Drug Targets 2020; 19:705-714. [PMID: 30760194 DOI: 10.2174/1871530319666190212165603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of the study was to examine the impact of neonatal acetaminophen (APAP; paracetamol) administrations on the thyroid-liver axis in male Wistar rats. METHODS APAP (100 or 350mg/kg) was orally administered to neonates from Postnatal Day (PND) 20 to 40. RESULTS Both APAP doses elicited a substantial increase in serum TSH, albumin, AST, ALT, and ALP values, and a profound decrease in serum FT4 and FT3 values at PND 40 relative to those in the control group. Additionally, the hypothyroid state in both APAP-treated groups may increase the histopathological variations in the neonatal liver, such as destructive degeneration, fibrosis, fatty degeneration, fibroblast proliferation, haemorrhage, oedema, and vacuolar degeneration, at PND 40. Moreover, in the APAP groups, a marked depression was recorded in the t-SH and GSH levels and GPx and CAT activities at PND 40 in the neonatal liver compared to those in the control group. However, the levels of hepatic LPO, H2O2, and NO were increased in both APAP-treated groups at PND 40. All previous alterations were dose- dependent. CONCLUSION Neonatal APAP caused a hypothyroidism and disturbed hepatic cellular components by increasing prooxidant markers and decreasing antioxidant markers, causing hepatotoxicity. Thus, neonatal administrations of APAP may act as a neonatal thyroid-liver disruptor.
Collapse
Affiliation(s)
- R G Ahmed
- Zoology Department, Division of Anatomy and Embryology, Faculty of Science; Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
González-Maciel A, Romero-Velázquez RM, Alfaro-Rodríguez A, Sanchez Aparicio P, Reynoso-Robles R. Prenatal exposure to oxcarbazepine increases hippocampal apoptosis in rat offspring. J Chem Neuroanat 2019; 103:101729. [PMID: 31794794 DOI: 10.1016/j.jchemneu.2019.101729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 01/18/2023]
Abstract
This study assessed apoptosis in the offspring of rats exposed to oxcarbazepine (OXC) from day 7 to 15 of gestation. Three groups of pregnant Wistar rats were used: 1) Control, treated with saline solution; 2) treated with 100 mg/kg OXC; 3) treated with 100 mg/kg of carbamazepine (CBZ, as a positive control for apoptosis); the route of administration was intragastric. Apoptosis was detected at three postnatal ages using the TUNEL technique in the CA1, and CA3 regions of the hippocampus and in the dentate gyrus (DG); neurogenesis was assessed in the DG using an antibody against doublecortin. The litter characteristics were recorded. OXC increased apoptosis in all regions (p < 0.01) at the three ages evaluated. Lamination disruption occurred in CA1 and CA3 due to the neuron absence and to ectopic neurons; there were also malformations in the dorsal lamina of the DG in 38% and 25% of the pups born from rats treated with OXC and CBZ respectively. CBZ also increased apoptosis. No clear effect on neurogenesis in the DG was observed. The size of the litter was smaller (p < 0.01) in the experimental groups. Nineteen-day OXC fetuses had low weight (p < 0.01), but 21 and 30 postnatal days old CBZ and OXC pups were overweight (p < 0.01). The results demonstrate that OXC administered during gestation is pro-apoptotic, alters the cytoarchitecture of the hippocampus, reduces litter size, and probably influences postnatal weight. We provide evidence of the proapoptotic effect of CBZ when administered early in gestation.
Collapse
Affiliation(s)
- A González-Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico.
| | - R M Romero-Velázquez
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico.
| | - A Alfaro-Rodríguez
- Division of Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Col. Arenal de Guadalupe, Mexico City, C.P. 14389, Mexico.
| | - P Sanchez Aparicio
- Faculty of Veterinary Medicine, Department of Pharmacology, Universidad Autónoma del Estado de México, Mexico
| | - R Reynoso-Robles
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico.
| |
Collapse
|
5
|
Kohl A, Golan N, Cinnamon Y, Genin O, Chefetz B, Sela-Donenfeld D. A proof of concept study demonstrating that environmental levels of carbamazepine impair early stages of chick embryonic development. ENVIRONMENT INTERNATIONAL 2019; 129:583-594. [PMID: 31174146 DOI: 10.1016/j.envint.2019.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 05/20/2023]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug used for epilepsy and other disorders. Prescription of CBZ during pregnancy increases the risk for congenital malformations. CBZ is ubiquitous in effluents and persistent during wastewater treatment. Thus, it is re-introduced into agricultural ecosystems upon irrigation with reclaimed wastewater. People consuming produce irrigated with reclaimed wastewater were found to be exposed to CBZ. However, environmental concentrations of CBZ (μgL-1) are magnitudes lower than its therapeutic levels (μgml-1), raising the question of whether and how environmental levels of CBZ affect embryonic development. The chick embryo is a powerful and highly sensitive amniotic model system that enables to assess environmental contaminants in the living organism. Since the chick embryonic development is highly similar to mammalians, yet, it develops in an egg, toxic effects can be directly analyzed in a well-controlled system without maternal influences. This research utilized the chick embryo to test whether CBZ is embryo-toxic by using morphological, cellular, molecular and imaging strategies. Three key embryonic stages were monitored: after blastulation (st.1HH), gastrulation/neurulation (st.8HH) and organogenesis (st.15HH). Here we demonstrate that environmental relevant concentrations of CBZ impair morphogenesis in a dose- and stage- dependent manner. Effects on gastrulation, neural tube closure, differentiation and proliferation were exhibited in early stages by exposing embryos to CBZ dose as low as 0.1μgL-1. Quantification of developmental progression revealed a significant difference in the total score obtained by CBZ-treated embryos compared to controls (up to 5-fold difference, p<0.05). Yet, defects were unnoticed as embryos passed gastrulation/neurulation. This study provides the first evidence for teratogenic effect of environmental-relevant concentrations of CBZ in amniotic embryos that impair early but not late stages of development. These findings call for in-depth risk analysis to ensure that the environmental presence of CBZ and other drugs is not causing irreversible ecological and public-health damages.
Collapse
Affiliation(s)
- Ayelet Kohl
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Naama Golan
- Department of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yuval Cinnamon
- Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization - The Volcani Center, Rishon LeZiyon 7528809, Israel
| | - Olga Genin
- Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization - The Volcani Center, Rishon LeZiyon 7528809, Israel
| | - Benny Chefetz
- Department of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
6
|
Ahmed RG, El-Gareib AW. Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARγ and Upregulating Caspase-3/NF-ĸB/Cox2/BAX/iNOS/ROS. Dose Response 2019; 17:1559325819858266. [PMID: 31258454 PMCID: PMC6589982 DOI: 10.1177/1559325819858266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The goal of this investigation was to evaluate the effects of gestational administrations of arsenic trioxide (ATO; As2O3) on fetal neuroendocrine development (the thyroid-cerebrum axis). Pregnant Wistar rats were orally administered ATO (5 or 10 mg/kg) from gestation day (GD) 1 to 20. Both doses of ATO diminished free thyroxine and free triiodothyronine levels and augmented thyrotropin level in both dams and fetuses at GD 20. Also, the maternofetal hypothyroidism in both groups caused a dose-dependent reduction in the fetal serum growth hormone, insulin growth factor-I (IGF-I), and IGF-II levels at embryonic day (ED) 20. These disorders perturbed the maternofetal body weight, fetal brain weight, and survival of pregnant and their fetuses. In addition, destructive degeneration, vacuolation, hyperplasia, and edema were observed in the fetal thyroid and cerebrum of both ATO groups at ED 20. These disruptions appear to depend on intensification in the values of lipid peroxidation, nitric oxide, and H2O2, suppression of messenger RNA (mRNA) expression of nuclear factor erythroid 2-related factor 2 and peroxisome proliferator-activated receptor gamma, and activation of mRNA expression of caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2, Bcl-2–associated X protein, and inducible nitric oxide synthase in the fetal cerebrum. These data suggest that gestational ATO may disturb thyroid-cerebrum axis generating fetal neurodevelopmental toxicity.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
7
|
Teratogenic potential of third-generation antiepileptic drugs: Current status and research needs. Pharmacol Rep 2019; 71:491-502. [DOI: 10.1016/j.pharep.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/27/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
|
8
|
R G A. Gestational caffeine exposure acts as a fetal thyroid-cytokine disruptor by activating caspase-3/BAX/Bcl-2/Cox2/NF-κB at ED 20. Toxicol Res (Camb) 2019; 8:196-205. [PMID: 30997021 PMCID: PMC6415617 DOI: 10.1039/c8tx00227d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
The objective of this examination was to explore the impact of gestational caffeine (1,3,7-trimethylxanthine) exposure on the maternofetal thyroid axis and fetal thyroid-cytokine communications during gestation. Pregnant rats (Rattus norvegicus) were intraperitoneally administered caffeine (120 or 150 mg kg-1) from gestation day (GD) 1 to 20. Both doses of caffeine resulted in maternal hyperthyroidism, whereas the elevation in the concentration of serum free triiodothyronine (FT3) and free thyroxine (FT4) was related to a depletion in the level of TSH at GD 20. Maternal body weight gain and food consumption were markedly increased, while fetal body weight was significantly reduced. These alterations caused fetal hypothyroidism and several pathological lesions in the fetal thyroid gland including a vacuolar colloid, destructive degeneration, atrophy and hyperplasia at embryonic day (ED) 20. The abnormalities in the fetal thyroid gland seemed to depend on the activation of caspase-3, Bcl-2, BAX, Cox2, and NF-κB mRNA expression. Both maternal caffeine doses caused a marked attenuation in the values of fetal serum GH, IGF-II, VEGF, TGF-β, TNF-α, IL-1β, IL-6, leptin and MCP-1, and a noticeable elevation in the value of fetal serum adiponectin at ED 20. Thus, gestational caffeine exposure might disrupt the fetal thyroid-cytokine axis.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology , Zoology Department , Faculty of Science , Beni-Suef University , Beni-Suef , Egypt . ;
| |
Collapse
|
9
|
R G A, El-Gareib AW. WITHDRAWN: Toxic effects of gestational arsenic trioxide on the neuroendocrine axis of developing rats. Food Chem Toxicol 2018:S0278-6915(18)30663-X. [PMID: 30218683 DOI: 10.1016/j.fct.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
10
|
Ahmed RG, Walaa GH, Asmaa FS. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicol Ind Health 2018; 34:397-407. [DOI: 10.1177/0748233718757082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this study was to assess the effects of neonatal bisphenol A (BPA) administration on neuroendocrine features (the thyroid–brain axis). BPA (20 or 40 µg/kg) was orally administered to juvenile male albino rats ( Rattus norvegicus) from postnatal days (PNDs) 15 to 30. Both doses resulted in lower serum thyroxine (T4), triiodothyronine (T3), and growth hormone levels and higher thyrotropin level than the control levels at PND 30. In the neonatal cerebellum and cerebrum, vacuolation, pyknosis, edema, degenerative changes, and reductions in the size and number of the cells were observed in both treated groups. Alternatively, elevations in oxidative markers (lipid peroxidation, nitric oxide, and hydrogen peroxide [H2O2]) at both dose levels were recorded at PND 30, along with decreased activities of antioxidant markers (ascorbic acid, total thiol [t-SH], glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and catalase) with respect to control levels. Thus, the BPA-induced hypothyroid state may disturb the neonatal thyroid–brain axis via production of free radicals, and this could damage the plasma membrane and cellular components, delaying cerebrum and cerebellum development.
Collapse
Affiliation(s)
- RG Ahmed
- Anatomy and Embryology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - GH Walaa
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - FS Asmaa
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Ahmed R, El-Gareib A, Shaker H. Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sci 2018; 192:213-220. [DOI: 10.1016/j.lfs.2017.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
|
12
|
Ahmed R. Endocrine Disruptors; Possible Mechanisms for Inducing Developmental Disorders. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2017. [DOI: 10.15171/ijbsm.2017.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- R.G. Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|