1
|
Hedya S, Charlton A, Leitch AC, Aljehani FA, Pinker B, Wright MC, Abdelghany TM. The methylimidazolium ionic liquid M8OI is a substrate for OCT1 and p-glycoprotein-1 in rat. Toxicol In Vitro 2023; 88:105550. [PMID: 36603777 DOI: 10.1016/j.tiv.2022.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
The methylimidazolium ionic liquid M8OI was recently found to be present in both the environment and man. In this study, M8OI disposition and toxicity were examined in an established rat progenitor-hepatocyte model. The progenitor B-13 cell was approx. 13 fold more sensitive to the toxic effects of M8OI than the hepatocyte B-13/H cell. However, this difference in sensitivity was not associated with a difference in metabolic capacities. M8OI toxicity was significantly decreased in a dose-dependent manner by co-addition of the OCT1 (SLC22A1) inhibitor clonidine, but not by OCT2 or OCT3 inhibitors in B-13 cells. M8OI toxicity was also dose-dependently increased by the co-addition of p-glycoprotein-1 (ABCB1B, multi drug resistant protein 1 (MDR1)) substrates/inhibitors. Excretion of B-13-loaded fluorophore Hoechst 33342 was also inhibited by the p-glycoproteins substrate cyclosporin A and by M8OI in a dose-dependent manner. Comparing levels of OCT and p-glycoprotein transcripts and proteins in B-13 and B-13/H cells suggest that the lower sensitivity to M8OI in B-13/H cells is predominantly associated with their higher expression of p-glycoprotein-1. These data together therefore suggest that a determinant in M8OI toxicity in rats is the expression and activity of the p-glycoprotein-1 transporter.
Collapse
Affiliation(s)
- Shireen Hedya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Alex Charlton
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 8QB, United Kingdom
| | - Alistair C Leitch
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Fahad A Aljehani
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Benjamin Pinker
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Matthew C Wright
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom.
| | - Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom; School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE24HH, United Kingdom
| |
Collapse
|
2
|
In vitro proteomic analysis of methapyrilene toxicity in rat hepatocytes reveals effects on intermediary metabolism. Arch Toxicol 2018; 93:369-383. [DOI: 10.1007/s00204-018-2360-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
|
3
|
Fairhall EA, Leitch AC, Lakey AF, Abdelghany TM, Ibrahim I, Tosh D, Kass GEN, Wilson C, Wright MC. HNF4alpha expression amplifies the glucocorticoid-induced conversion of a human pancreatic cell line to an hepatocyte-like cell. Biochem Biophys Res Commun 2018; 503:1633-1640. [PMID: 30057318 DOI: 10.1016/j.bbrc.2018.07.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
The pancreas and liver are closely related developmentally and trans-differentiation of cells from one tissue into the cells of the other has been documented to occur after injury or exposure to selected growth factors or glucocorticoid hormones. To generate a readily-expandable source of human hepatocyte-like (H-13) cells, the human pancreatic adenocarcinoma cell (HPAC) line was stably transfected with a construct encoding the variant 2 hepatocyte nuclear factor 4 α (HNF4α) using a piggyBac vector and transient expression of a transposase. Through induction of transgene HNF4α regulated via an upstream glucocorticoid response element in combination with existing modulating effects of glucocorticoid, H-13 cells were converted into quantitatively similar hepatocyte-like (H-13/H) cells based on expression of a variety of hepatocyte proteins. H-13/H cells also demonstrated the ability to store glycogen and lipids. These data provide proof of concept that regulated expression of genes associated with hepatocyte phenotype could be used to generate quantitatively functional human hepatocyte-like cells using a readily expandable cell source and simple culture protocol. This approach would have utility in Toxicology and Hepatology research.
Collapse
Affiliation(s)
- Emma A Fairhall
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom; Leica Biosystems Ltd, Newcastle Upon Tyne, UK.
| | - Alistair C Leitch
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom.
| | - Anne F Lakey
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom.
| | - Tarek M Abdelghany
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt.
| | - Ibrahim Ibrahim
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom; Freeman Hospital, Newcastle Upon Tyne, Tyne and Wear, NE7 7DN, United Kingdom.
| | - David Tosh
- Department of Biology & Biochemistry, University of Bath, UK.
| | - George E N Kass
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy.
| | - Colin Wilson
- Freeman Hospital, Newcastle Upon Tyne, Tyne and Wear, NE7 7DN, United Kingdom.
| | - Matthew C Wright
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom.
| |
Collapse
|