1
|
Lința AV, Lolescu BM, Ilie CA, Vlad M, Blidișel A, Sturza A, Borza C, Muntean DM, Crețu OM. Liver and Pancreatic Toxicity of Endocrine-Disruptive Chemicals: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2024; 25:7420. [PMID: 39000526 PMCID: PMC11242905 DOI: 10.3390/ijms25137420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
In recent years, the worldwide epidemic of metabolic diseases, namely obesity, metabolic syndrome, diabetes and metabolic-associated fatty liver disease (MAFLD) has been strongly associated with constant exposure to endocrine-disruptive chemicals (EDCs), in particular, the ones able to disrupt various metabolic pathways. EDCs have a negative impact on several human tissues/systems, including metabolically active organs, such as the liver and pancreas. Among their deleterious effects, EDCs induce mitochondrial dysfunction and oxidative stress, which are also the major pathophysiological mechanisms underlying metabolic diseases. In this narrative review, we delve into the current literature on EDC toxicity effects on the liver and pancreatic tissues in terms of impaired mitochondrial function and redox homeostasis.
Collapse
Affiliation(s)
- Adina V. Lința
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania
| | - Bogdan M. Lolescu
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania
| | - Cosmin A. Ilie
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Department of Functional Sciences—Chair of Public Health & Sanitary Management, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Mihaela Vlad
- Department of Internal Medicine II—Chair of Endocrinology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania;
| | - Alexandru Blidișel
- Department of Surgery I—Chair of Surgical Semiotics & Thoracic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania; (A.B.); (O.M.C.)
- Centre for Hepato-Biliary and Pancreatic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania
| | - Adrian Sturza
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Claudia Borza
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Danina M. Muntean
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Octavian M. Crețu
- Department of Surgery I—Chair of Surgical Semiotics & Thoracic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania; (A.B.); (O.M.C.)
- Centre for Hepato-Biliary and Pancreatic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania
| |
Collapse
|
2
|
Wang C, Liu X, Zhai J, Zhong C, Zeng H, Feng L, Yang Y, Li X, Ma M, Luan T, Deng J. Effect of oxidative stress induced by 2,3,7,8- tetrachlorodibenzo-p-dioxin on DNA damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134485. [PMID: 38701725 DOI: 10.1016/j.jhazmat.2024.134485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic persistent organic pollutant (POP) that can induce DNA damage within cells. Although oxidative stress is one of the primary mechanisms causing DNA damage, its role in the process of TCDD-induced DNA damage remains unclear. In this study, the TCDD-induced production of reactive oxygen species (ROS) and the occurrence of DNA damage at the AP site were monitored simultaneously. Further investigation revealed that TCDD impaired the activities of superoxide dismutase (SOD) and catalase (CAT), compromising the cellular antioxidant defense system. Consequently, this led to an increase in the production of O2.- and NO, thus inducing DNA damage at the AP site under oxidative stress. Our findings were further substantiated by the upregulation of key genes in the base excision repair (BER) pathway and the absence of DNA AP site damage after inhibiting O2.- and NO. In addition, transcriptome sequencing revealed that TCDD induces DNA damage by upregulating genes associated with oxidative stress in the mitogen-activated protein kinase (MAPK), cyclic adenosine monophosphate (cAMP), and breast cancer pathways. This study provides important insights into the toxicity mechanisms of TCDD.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoxin Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chunfei Zhong
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Haishen Zeng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Longkuan Feng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunyun Yang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Lu T, Zhang T, Yang W, Yang B, Cao J, Yang Y, Li M. Molecular Toxicity Mechanism Induced by the Antibacterial Agent Triclosan in Freshwater Euglena gracilis Based on the Transcriptome. TOXICS 2023; 11:toxics11050414. [PMID: 37235229 DOI: 10.3390/toxics11050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Triclosan (TCS), a commonly used antibacterial preservative, has been demonstrated to have high toxicological potential and adversely affects the water bodies. Since algae are one of the most significant primary producers on the planet, understanding the toxicological processes of TCS is critical for determining its risk in aquatic ecosystems and managing the water environment. The physiological and transcriptome changes in Euglena gracilis were studied in this study after 7 days of TCS treatment. A distinct inhibition ratio for the photosynthetic pigment content in E. gracilis was observed from 2.64% to 37.42% at 0.3-1.2 mg/L, with TCS inhibiting photosynthesis and growth of the algae by up to 38.62%. Superoxide dismutase and glutathione reductase significantly changed after exposure to TCS, compared to the control, indicating that the cellular antioxidant defense responses were induced. Based on transcriptomics, the differentially expressed genes were mainly enriched in biological processes involved in metabolism pathways and microbial metabolism in diverse environments. Integrating transcriptomics and biochemical indicators found that changed reactive oxygen species and antioxidant enzyme activities stimulating algal cell damage and the inhibition of metabolic pathways controlled by the down-regulation of differentially expressed genes were the main toxic mechanisms of TCS exposure to E. gracilis. These findings establish the groundwork for future research into the molecular toxicity to microalgae induced by aquatic pollutants, as well as provide fundamental data and recommendations for TCS ecological risk assessment.
Collapse
Affiliation(s)
- Ting Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weishu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Yang-Jie D, Xiang FM, Tao XH, Jiang CL, Zhang TZ, Zhang ZJ. A full-scale black soldier fly larvae ( Hermetia illucens) bioconversion system for domestic biodegradable wastes to resource. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:143-154. [PMID: 35730797 DOI: 10.1177/0734242x221103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Domestic biodegradable wastes (DBW) pose a threat to environmental quality and human health. Bioconversion via black soldier fly larvae (BSFL; Hermitia illucens L.) is an expedient way for converting 'waste to resource' (insect protein and biofertilizer). Although researches abounded in laboratory-reared experiments and bioconversion mechanisms were pertinent, the void of data from actual and full-scale operation restricts the intensification of BSFL technology and its global adoption. Hence, a full-scale BSFL bioconversion system lasting 4 years in Hangzhou (China) was investigated, and the feasibility and efficiency of 15 tonnes of DBW per day were studied. Through continuous technical optimization, the average production of fresh larvae was increased from 8.5% in 2017 to 15.3% in 2020, along with bioconversion rate of final vermicompost decreased from 35.4% to 14.5%. The total biomass reduction rate in 2020 was 68.7 ± 17.4 kg/(m3 d), equivalent to 0.735 ± 0.215 kg/(kg d) in the form of fresh larvae. Crude fat in fresh larvae accounted for 13.4%, and crude protein accounted for 16.2% in which the determined amino acid profile bore a strong resemblance to fish meal only except histidine and tyrosine. Its economic benefits proved the feasibility of this technology, and the profit reached up to 35.9 US$ per tonne of DBW in 2019. In conclusion, BSFL bioconversion system under current 'insect-farm' operation was a promising solution for DBW treatment with value-added waste recycling.
Collapse
Affiliation(s)
- Deng Yang-Jie
- College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
- Hangzhou Gusheng Technology Company, Hangzhou, P. R. China
| | - Fang-Ming Xiang
- College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
- Hangzhou Gusheng Technology Company, Hangzhou, P. R. China
| | - Xing-Hua Tao
- College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Cheng-Liang Jiang
- College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
- Hangzhou Gusheng Technology Company, Hangzhou, P. R. China
- Zhejiang Fumei Biotechnology Company, Hangzhou, P. R. China
| | | | - Zhi-Jian Zhang
- College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
- China Academy of West Region Development, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
6
|
Arance E, Ramírez V, Rubio-Roldan A, Ocaña-Peinado FM, Romero-Cachinero C, Jódar-Reyes AB, Vazquez-Alonso F, Martinez-Gonzalez LJ, Alvarez-Cubero MJ. Determination of Exosome Mitochondrial DNA as a Biomarker of Renal Cancer Aggressiveness. Cancers (Basel) 2021; 14:cancers14010199. [PMID: 35008363 PMCID: PMC8750318 DOI: 10.3390/cancers14010199] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Components of liquid biopsy are potential non-invasive biomarkers for monitoring renal cell carcinoma (RCC) status. The aim of our study was to examine mitochondrial genes (such as HV1 and CYB) included in exosomal fractions as promising and innovative biomarkers in RCC. We found that phase C containing different types of vesicles and phase F rich in exosomes with a high mitochondrial DNA (mtDNA) content could be considered as powerful biomarkers for susceptibility to RCC. Interestingly, mtDNA was a good genetic marker when aggressiveness was evaluated. Abstract Here, the role of non-invasive biomarkers in liquid biopsy was evaluated, mainly in exosomes and mitochondrial DNA (mtDNA) as promising, novel, and stable biomarkers for renal cell carcinoma (RCC). A total of 140 fractions (named from B to F) obtained by ultracentrifugations of whole blood samples from 28 individuals (13 patients and 15 controls) were included. Nanoparticle Tracking Analysis (NTA) was conducted to characterized exosomal fraction. Subsequently, an analysis of digital PCR (dPCR) using the QuantStudio™ 3D Digital PCR platform was performed and the quantification of mtDNA copy number by QuantStudioTM 12K Flex Real-Time PCR System (qPCR) was developed. Moreover, Next Generation Sequencing (NGS) analyses were included using MiSeq system (Illumina, San Diego, CA, USA). An F fraction, which contains all exosome data and all mitochondrial markers, was identified in dPCR and qPCR with statistically significant power (adjusted p values ≤ 0.03) when comparing cases and controls. Moreover, present analysis in mtDNA showed a relevant significance in RCC aggressiveness. To sum up, this is the first time a relation between exosomal mtDNA markers and clinical management of RCC is analyzed. We suggest a promising strategy for future liquid biopsy RCC analysis, although more analysis should be performed prior to application in routine clinical practice.
Collapse
Affiliation(s)
- Elena Arance
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114-18016 Granada, Spain; (E.A.); (V.R.); (A.R.-R.)
| | - Viviana Ramírez
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114-18016 Granada, Spain; (E.A.); (V.R.); (A.R.-R.)
| | - Alejandro Rubio-Roldan
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114-18016 Granada, Spain; (E.A.); (V.R.); (A.R.-R.)
| | | | - Catalina Romero-Cachinero
- Nursery Department. University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain;
| | - Ana Belén Jódar-Reyes
- Biocolloid and Fluid Physics Group, Excellence Research Unit Modeling Nature (MNat), Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain;
| | - Fernando Vazquez-Alonso
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain;
| | - Luis Javier Martinez-Gonzalez
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114-18016 Granada, Spain; (E.A.); (V.R.); (A.R.-R.)
- Correspondence: ; Tel.: +34-958-715-500; Fax: +34-958-637-071
| | - Maria Jesus Alvarez-Cubero
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS Granada, University of Granada, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
| |
Collapse
|