1
|
Gaballah S, Hormon B, Nelson GSAM, Cao J, Hoffman K, Patisaul HB, Stapleton HM. Distribution of polybrominated diphenyl ethers (PBDEs) in placental tissues of maternal and fetal origin in exposed Wistar rats and associations with thyroid hormone levels. Toxicol Sci 2025; 204:20-30. [PMID: 39626304 PMCID: PMC11879049 DOI: 10.1093/toxsci/kfae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
In utero exposure to polybrominated diphenyl ethers (PBDEs) is linked to adverse pregnancy and fetal health outcomes, including altered thyroid hormone (TH) levels. Despite their phase-out, PBDEs are still commonly detected in newborn cord blood. While PBDEs can cross the placenta, few studies have separately assessed PBDEs or THs in the maternal and fetal placental tissues. Additionally, no studies have separately assessed THs in these tissues across mid- and late gestation, during the onset of fetal TH synthesis. To address these gaps, we conducted a study with Wistar rats and examined PBDE accumulation in the maternal and fetal placenta. Pregnant dams were exposed daily to sesame oil vehicle, a low dose, or high dose PBDE mixture. At GD15 and 20, dams were sacrificed and placental tissues were collected. Tissues were analyzed for PBDEs, T3, rT3, and T4 using mass spectrometry. BDE-47, -99, -100, and -209 were frequently detected in both the fetal and maternal placenta. At GD15, higher concentrations of BDE-99, -100, and -209 were measured in the fetal placenta; however, this trend reversed by GD20, with higher maternal placental concentrations. Placental T3 and T4 were significantly impacted by exposure, tissue, and exposure × tissue at GD15, with significant reductions in both THs following low-dose exposure in the maternal placenta. By GD20, maternal placental T3 was only significantly reduced in the high exposure groups and there was no effect on placental T4. Overall, these results highlight the rapid developmental changes that occur throughout gestation between the maternal and fetal placenta, and the differential impacts of gestational PBDE exposure on placental T3 and T4 across mid- and late gestation.
Collapse
Affiliation(s)
- Shaza Gaballah
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, United States
| | - Brian Hormon
- Department of Biology, North Carolina State University, Raleigh, NC 27695, United States
| | | | - Jinyan Cao
- Department of Biology, North Carolina State University, Raleigh, NC 27695, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, United States
| | - Heather B Patisaul
- Department of Biology, North Carolina State University, Raleigh, NC 27695, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, United States
| |
Collapse
|
2
|
Sun Y, Xu Y, Wu H, Hou J. A critical review on BDE-209: Source, distribution, influencing factors, toxicity, and degradation. ENVIRONMENT INTERNATIONAL 2024; 183:108410. [PMID: 38160509 DOI: 10.1016/j.envint.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used polybrominated diphenyl ether, BDE-209 is commonly used in polymer-based commercial and household products. Due to its unique physicochemical properties, BDE-209 is ubiquitous in a variety of environmental compartments and can be exposed to organisms in various ways and cause toxic effects. The present review outlines the current state of knowledge on the occurrence of BDE-209 in the environment, influencing factors, toxicity, and degradation. BDE-209 has been detected in various environmental matrices including air, soil, water, and sediment. Additionally, environmental factors such as organic matter, total suspended particulate, hydrodynamic, wind, and temperature affecting BDE-209 are specifically discussed. Toxicity studies suggest BDE-209 may cause systemic toxic effects on living organisms, reproductive toxicity, embryo-fetal toxicity, genetic toxicity, endocrine toxicity, neurotoxicity, immunotoxicity, and developmental toxicity, or even be carcinogenic. BDE-209 has toxic effects on organisms mainly through epigenetic regulation and induction of oxidative stress. Evidence regarding the degradation of BDE-209, including biodegradation, photodegradation, Fenton degradation, zero-valent iron degradation, chemical oxidative degradation, and microwave radiation degradation is summarized. This review may contribute to assessing the environmental risks of BDE-209 to help develop rational management plans.
Collapse
Affiliation(s)
- Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
3
|
Xue J, Xiao Q, Zhang M, Li D, Wang X. Toxic Effects and Mechanisms of Polybrominated Diphenyl Ethers. Int J Mol Sci 2023; 24:13487. [PMID: 37686292 PMCID: PMC10487835 DOI: 10.3390/ijms241713487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in plastics, textiles, polyurethane foam, and other materials. They contain two halogenated aromatic rings bonded by an ester bond and are classified according to the number and position of bromine atoms. Due to their widespread use, PBDEs have been detected in soil, air, water, dust, and animal tissues. Besides, PBDEs have been found in various tissues, including liver, kidney, adipose, brain, breast milk and plasma. The continued accumulation of PBDEs has raised concerns about their potential toxicity, including hepatotoxicity, kidney toxicity, gut toxicity, thyroid toxicity, embryotoxicity, reproductive toxicity, neurotoxicity, and immunotoxicity. Previous studies have suggested that there may be various mechanisms contributing to PBDEs toxicity. The present study aimed to outline PBDEs' toxic effects and mechanisms on different organ systems. Given PBDEs' bioaccumulation and adverse impacts on human health and other living organisms, we summarize PBDEs' effects and potential toxicity mechanisms and tend to broaden the horizons to facilitate the design of new prevention strategies for PBDEs-induced toxicity.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| | | | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| |
Collapse
|
4
|
Liu M, Yu Z, Yang F, Zhao Z, Zhou M, Wang C, Zhang B, Liang G, Liu X, Shao J. BDE209-promoted Dio2 degradation in H4 glioma cells through the autophagy pathway, resulting in hypothyroidism and leading to neurotoxicity. Toxicology 2023:153581. [PMID: 37330034 DOI: 10.1016/j.tox.2023.153581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Decabromodiphenyl ether (BDE209), the homologue with the highest number of brominates in polybrominated diphenyl ethers (PBDEs), is one of the most widespread environmental persistent organic pollutants (POPs) due to its mass production and extensive application in recent decades. BDE209 is neurotoxic, possibly related to its interference with the thyroid hormone (TH) system. However, the underlying molecular mechanisms of BDE209-induced TH interference and neurobehavioral disorders remains unknown. Here, we explored how BDE209 manipulated the major enzyme, human type II iodothyronine deiodinase (Dio2), that is most important in regulating local cerebral TH equilibrium by neuroglial cells, using an in vitro model of human glioma H4 cells. Clonogenic cell survival assay and LC/MS/MS analysis showed that BDE209 could induce chronic neurotoxicity by inducing TH interference. Co-IP assay, RT-qPCR and confocal assay identified that BDE209 destroyed the stability of Dio2 without affecting its expression, and promoted its binding to p62, thereby enhancing its autophagic degradation, thus causing TH metabolism disorder and neurotoxicity. Furthermore, molecular docking studies predicted that BDE209 could effectively suppress Dio2 activity by competing with tetraiodothyronine (T4). Collectively, our study demonstrates that BDE209-induced Dio2 degradation and loss of its enzymatic activity in neuroglial cells are the fundamental pathogenic basis for BDE209-mediated cerebral TH disequilibrium and neurotoxicity, providing a target of interest for further investigation using glial/neuronal cell co-culture system and in vivo models.
Collapse
Affiliation(s)
- Min Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China; Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, China
| | - Zhenlong Yu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Fangyu Yang
- General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang, China
| | - Zikuang Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 116000, China
| | - Meirong Zhou
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Baojing Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Guobiao Liang
- General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang, China.
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology; Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
5
|
Hao X, Liu X, Yu S, Qin C, Wang R, Li C, Shao J. Intravenous As 2O 3 as a promising treatment for psoriasis - an experimental study in psoriasis-like mouse model. Immunopharmacol Immunotoxicol 2022; 44:935-958. [PMID: 35748353 DOI: 10.1080/08923973.2022.2093742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the efficacy and mechanistic bases of the intravenous injection of arsenic trioxide at clinical-relevant doses for treating an imiquimod-induced psoriasis-like mouse model. METHODS After inducing psoriasis-like skin lesions on the back of mice with imiquimod, mice in each group were injected with a clinical dose of arsenic trioxide through the tail vein. The changes in the gene expression, protein expression and distribution of relevant inflammatory factors were evaluated in the inflicted skin area, for mechanisms underlying the efficacy of intravenous As2O3 intervention. HaCaT cells were used to establish an in vitro psoriasis model and pcDNA3.1-NF-κB overexpression plasmid was transfected into cells to overexpress P65, which further confirmed the role of the NF-κB signaling pathway in the effectiveness of As2O3. RESULTS Clinical dose of As2O3 can significantly improve abnormal symptoms and pathological changes in psoriasis-like skin lesions induced by IMQ in mice. While IMQ induced abnormal expression and distribution of inflammatory factors in the RIG-I pathway and the microRNA-31 (miR-31) pathway in psoriatic skin tissues, intravenous As2O3 can effectively regulate and restore the normality. The leading role of NF-κB signaling was evidenced in vivo and validated in vitro using the NF-κB-overexpressed HaCaT cell model. CONCLUSION Clinical dosage of As2O3 may achieve effective treatment of IMQ-induced psoriatic skin lesions by modulating the NF-κB signaling pathway which regulates both the RIG-I and the miR-31 lines of action. Our data provided strong evidence supporting the claim that systemic As2O3 administration of clinical doses can be a promising treatment for psoriasis patients.
Collapse
Affiliation(s)
- Xiaoji Hao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Shunfei Yu
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Chang Qin
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Ruonan Wang
- Office of Health Emergency, Tianjin Binhai New Area Center for Disease Control and Prevention, Tianjin, China
| | - Chunna Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China.,Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Zuñiga LFF, Muñoz YS, Pustovrh MC. Thyroid hormones: Metabolism and transportation in the fetoplacental unit. Mol Reprod Dev 2022; 89:526-539. [PMID: 36208482 DOI: 10.1002/mrd.23647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 12/25/2022]
Abstract
The thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), are of vital importance for fetal development. The concentration of THs in fetal circulation varies throughout gestation and differs from the concentration in the maternal serum, indicating the presence of maternal-fetal thyroid homeostasis regulatory mechanisms in the placenta. The passage of THs from maternal circulation to fetal circulation is modulated by plasma membrane transporters, enzymes, and carrier proteins. Monocarboxylate transporter 8, iodothyronine deiodinases (DIO2 and DIO3), and transthyretin are especially involved in this maternal-fetal thyroid modulation, shown by a greater expression in the placenta. THs also play a role in placental development and as expected, abnormal variations in TH levels are associated with pregnancy complications and can result in damage to the fetus. Although new evidence regarding TH regulation during pregnancy and its effects in the mother, placenta, and fetus has been published, many aspects of these interactions are still poorly understood. The objective of this review is to provide an evidence-based update, drawn from current data, on the metabolism and transport of THs in the placenta and their vital role in the maternal-fetal relationship.
Collapse
Affiliation(s)
- Luis Felipe Falla Zuñiga
- Department of Morphology, College of Basic Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Yhoiss Smiht Muñoz
- Department of Morphology, College of Basic Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Maria Carolina Pustovrh
- Department of Morphology, College of Basic Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| |
Collapse
|