1
|
Li D, Wang J, Zeng J, Li S, Sun D, Qiu L, Huang Z, Wang K, Fu G, Gou D, Zhang Y. Identification and Validation of Genes Exhibiting Dynamic Alterations in Response to Bleomycin-Induced Pulmonary Fibrosis. Mol Biotechnol 2024; 66:3323-3335. [PMID: 37924392 DOI: 10.1007/s12033-023-00943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) carries a high mortality rate and has a poor prognosis. The pathogenesis of pulmonary fibrosis (PF) is highly related to dysregulation of multiple RNAs. This study aims to identify and validate dysregulated RNAs that exhibited dynamic alterations in response to bleomycin (BLM)-induced PF. The results will provide therapeutic targets for patients suffering from IPF. Whole transcriptomic profiles of BLM-induced PF were obtained through high-throughput RNA sequencing. miRNA profiling was downloaded from GSE45789 database in the Gene Expression Omnibus (GEO). We identified the differentially expressed RNAs (DERNAs) that exhibited dynamic alterations in response to BLM-induced PF. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis were conducted to discovery regulatory processes of PF. Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, and co-expression analysis were performed to identify key genes and pathogenic pattern during the progression of PF. MiRanda, miRcode, and TargetScan were utilized to predict target relationships in the potential competing endogenous RNA (ceRNA) network. The results were verified by qRT-PCR analysis. In the context of BLM-induced PF, this study identified a total of 167 differentially expressed messenger RNAs (DEmRNAs), 115 differentially expressed long non-coding RNAs (DElncRNAs), 45 differentially expressed circular RNAs (DEcircRNAs), and 87 differentially expressed microRNAs (DEmiRNAs). These RNA molecules showed dynamic alterations in response to BLM-induced PF. These DEmRNAs exhibited a predominant association with the biological processes pertaining to the organization of extracellular matrix. A regulatory network was built in PF, encompassing 31 DEmRNAs, 18 DE lncRNAs, 13 DEcircRNAs, and 13 DEmiRNAs. Several DERNA molecules were subjected to validate using additional BLM-induced PF model. The outcomes of this validation process shown a strong correlation with the results obtained from RNA sequencing analysis. The GSE213001 dataset was utilized to validate the expression levels and diagnostic efficacy of four specific hub mRNAs (CCDC80, CLU, COL5A1, and COL6A3) in individuals diagnosed with PF. In this study, we identified and validated several RNA molecules that exhibited dynamic alternations in response to BLM-induced PF. These dysregulated RNAs participated in the pathogenesis of PF and can be used as therapeutic targets for early-stage IPF. Although more work must be done to confirm the results, our study may provide directions for future studies.
Collapse
Affiliation(s)
- Dengyuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Jie Zeng
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Shujin Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Danxiong Sun
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Lin Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Zhenming Huang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Ku Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Gaohui Fu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China.
| |
Collapse
|
2
|
Ma Z, Wang N, Meng T, Zhang R, Huang Y, Li T. Integrated analysis of ceRNA-miRNA changes in paraquat-induced pulmonary epithelial-mesenchymal transition via high-throughput sequencing. J Biochem Mol Toxicol 2024; 38:e23681. [PMID: 38444083 DOI: 10.1002/jbt.23681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 09/13/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Recent studies have shown that epithelial-mesenchymal transition (EMT) plays an important role in paraquat (PQ)-induced tissue fibrosis, which is the main cause of death in patients with PQ poisoning. However, no effective treatment for pulmonary interstitial fibrosis caused by PQ poisoning exists. It is of great significance for us to find new therapeutic targets through bioinformatics in PQ-induced EMT. We conducted transcriptome sequencing to determine the expression profiles of 1210 messenger RNAs (mRNAs), 558 long noncoding RNAs, 28 microRNAs (miRNAs), including 18 known-miRNAs, 10 novel-miRNAs and 154 circular RNAs in the PQ-exposed EMT group mice. Using gene ontology and Kyoto Encyclopaedia of Genes and Genomes analyses, we identified the pathways associated with signal transduction, cancers, endocrine systems and immune systems were involved in PQ-induced EMT. Furthermore, we constructed long noncoding RNA-miRNA-mRNA interrelated networks and found that upregulated genes included Il22ra2, Mdm4, Slc35e2 and Angptl4, and downregulated genes included RGS2, Gabpb2, Acvr1, Prkd3, Sp100, Tlr12, Syt15 and Camk2d. Thirteen new potential competitive endogenous RNA targets were also identified for further treatment of PQ-induced pulmonary tissue fibrosis. Through further study of the pathway and networks, we may identify new molecular targets in PQ-induced pulmonary EMT.
Collapse
Affiliation(s)
- Zhiyu Ma
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Nana Wang
- Endocrinology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Meng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Ruoying Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Yang Huang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| |
Collapse
|
3
|
Espinosa-Bautista F, Salazar-Sánchez MI, Brianza-Padilla M, León-Ávila G, Hernández-Díazcouder A, Domínguez-López ML, Amezcua-Guerra LM, Pineda C. Dysregulation of long non-coding RNAs in Takayasu arteritis: A proof-of-concept study. Clin Rheumatol 2024; 43:1253-1259. [PMID: 38285374 DOI: 10.1007/s10067-024-06880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Takayasu arteritis (TAK) is a rare systemic vasculitis primarily affecting the aorta and its major branches. Early diagnosis is critical to prevent severe vascular complications, yet current biomarkers are insufficient. This proof-of-concept study explores the potential of long non-coding RNAs (lncRNAs) in TAK, an area largely unexplored. In this cross-sectional study, 53 TAK patients, 53 healthy controls, and 10 rheumatoid arthritis (RA) patients were enrolled. Clinical evaluations, disease activity assessments, and lncRNA expression levels were analyzed. TAK patients exhibited significant dysregulation in several lncRNAs, including THRIL (19.4, 11.1-48.8 vs. 62.5, 48.6-91.4 arbitrary units [a.u.]; p < 0.0001), HIF1A-AS1 (4.5, 1.8-16.6 vs. 26.5, 19.8-33.7 a.u.; p < 0.0001), MALAT-1 (26.9, 13.8-52.5 vs. 92.1, 58.5-92.1 a.u.; p < 0.0001), and HOTAIR (8.0, 2.5-24.5 vs. 36.0, 30.0-43.8 a.u.; p < 0.0001), compared to healthy controls. Notably, HOTAIR (area under the ROC curve [AUC] = 0.825), HIF1A-AS1 (AUC = 0.820), and THRIL (AUC = 0.781) demonstrated high diagnostic potential with superior specificity (approximately 95%). While lncRNAs showed diagnostic promise, no significant correlations with TAK activity were observed. Comparative analysis with RA patients revealed distinct lncRNA expression patterns. This study unveils significant dysregulation of lncRNAs THRIL, HIF1A-AS1, and HOTAIR in TAK patients, underscoring their potential as biomarkers and opening avenues for further research into the mechanistic roles of these lncRNAs in TAK pathogenesis.
Collapse
Affiliation(s)
- Fernanda Espinosa-Bautista
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, Mexico
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, 14080, Tlalpan, Mexico City, Mexico
| | - Ma Isabel Salazar-Sánchez
- Laboratorio Nacional de Vacunología y Virus Tropicales, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Malinalli Brianza-Padilla
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, 14080, Tlalpan, Mexico City, Mexico
| | - Gloria León-Ávila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Adrián Hernández-Díazcouder
- Laboratorio de Investigación de Obesidad y Asma, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis M Amezcua-Guerra
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, 14080, Tlalpan, Mexico City, Mexico.
- Health Care Department, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico.
| | - Carlos Pineda
- Directorate, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| |
Collapse
|
4
|
Amicone L, Marchetti A, Cicchini C. The lncRNA HOTAIR: a pleiotropic regulator of epithelial cell plasticity. J Exp Clin Cancer Res 2023; 42:147. [PMID: 37308974 DOI: 10.1186/s13046-023-02725-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a trans-differentiation process that endows epithelial cells with mesenchymal properties, including motility and invasion capacity; therefore, its aberrant reactivation in cancerous cells represents a critical step to gain a metastatic phenotype. The EMT is a dynamic program of cell plasticity; many partial EMT states can be, indeed, encountered and the full inverse mesenchymal-to-epithelial transition (MET) appears fundamental to colonize distant secondary sites. The EMT/MET dynamics is granted by a fine modulation of gene expression in response to intrinsic and extrinsic signals. In this complex scenario, long non-coding RNAs (lncRNAs) emerged as critical players. This review specifically focuses on the lncRNA HOTAIR, as a master regulator of epithelial cell plasticity and EMT in tumors. Molecular mechanisms controlling its expression in differentiated as well as trans-differentiated epithelial cells are highlighted here. Moreover, current knowledge about HOTAIR pleiotropic functions in regulation of both gene expression and protein activities are described. Furthermore, the relevance of the specific HOTAIR targeting and the current challenges of exploiting this lncRNA for therapeutic approaches to counteract the EMT are discussed.
Collapse
Affiliation(s)
- Laura Amicone
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Alessandra Marchetti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Carla Cicchini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy.
| |
Collapse
|
5
|
Identification of circRNA expression profiles and the potential role of hsa_circ_0006916 in silicosis and pulmonary fibrosis. Toxicology 2023; 483:153384. [PMID: 36403901 DOI: 10.1016/j.tox.2022.153384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) are emerging as novel regulators in the biological development of various diseases, but their expression profiles, functions and mechanisms in silicosis and pulmonary fibrosis remain largely unexplored. In this study, we constructed a mouse model of pulmonary fibrosis by intratracheal injection of silica particles and then performed transcriptome RNA sequencing of lung tissues. The results showed that 78 circRNAs, 39 miRNAs and 262 mRNAs were differentially expressed. Among them, five circRNAs, three miRNAs and four mRNAs were further selected, and their abnormal expression was verified in mouse fibrotic lung tissues by RT-qPCR assay. The circRNA-associated ceRNA network including 206 ceRNA triplets was constructed based on abnormally expressed circRNAs, miRNAs and mRNAs, and miR-199b-5p, miR-296-5p and miR-708-5p were identified as hub miRNAs connected to circRNAs and mRNAs. Subsequently, GO and KEGG pathway enrichment analyses were performed to detect the potential roles of differentially expressed mRNAs in pulmonary fibrosis, which were mainly involved in immune response, Th17 cell differentiation, NF-κB signaling pathway and PI3K-Akt signaling pathway. Furthermore, we identified that hsa_circ_0006916 was up-regulated in pulmonary fibrosis. To characterize the potential role of hsa_circ_0006916, we transfected siRNA targeting hsa_circ_0006916 into alveolar macrophages and found that knockdown of hsa_circ_0006916 significantly increased the expression levels of M1 molecules IL-1β and TNF-α and reduced the expression level of M2 molecule TGF-β1, indicating that hsa_circ_0006916 may play an important role in the activation of M1-M2 polarization effect in macrophages. Our results provided important evidence on the possible contribution of these abnormal circRNAs to the development of silicosis and pulmonary fibrosis.
Collapse
|
6
|
Erdos E, Divoux A, Sandor K, Halasz L, Smith SR, Osborne TF. Unique role for lncRNA HOTAIR in defining depot-specific gene expression patterns in human adipose-derived stem cells. Genes Dev 2022; 36:566-581. [PMID: 35618313 PMCID: PMC9186385 DOI: 10.1101/gad.349393.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023]
Abstract
In this study, Erdos et al. investigated the role of HOX transcript antisense intergenic RNA (HOTAIR) in adipose tissue biology. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, they found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis, and demonstrate a unique function for HOTAIR in hASC depot-specific regulation of gene expression. Accumulation of fat above the waist is an important risk factor in developing obesity-related comorbidities independently of BMI or total fat mass. Deciphering the gene regulatory programs of the adipose tissue precursor cells within upper body or abdominal (ABD) and lower body or gluteofemoral (GF) depots is important to understand their differential capacity for lipid accumulation, maturation, and disease risk. Previous studies identified the HOX transcript antisense intergenic RNA (HOTAIR) as a GF-specific lncRNA; however, its role in adipose tissue biology is still unclear. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, we found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis. We further demonstrate a direct interaction between HOTAIR and genes with high RNAPII binding in their gene bodies, especially at their 3′ ends or transcription end sites. Computational analysis suggests HOTAIR binds preferentially to the 3′ ends of genes containing predicted strong RNA–RNA interactions with HOTAIR. Together, these results reveal a unique function for HOTAIR in hASC depot-specific regulation of gene expression.
Collapse
Affiliation(s)
- Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Timothy F Osborne
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| |
Collapse
|