1
|
Wang X, Yang X, Lu C, Zhang J, Li B, Du Z, Wang J, Wang J, Juhasz A, Yang Y, Zhu L. Are HFPO-TA and HFPO-DA safe substitutes for PFOA? A comprehensive toxicity study using zebrafish (Danio rerio) embryos and adults. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136718. [PMID: 39637815 DOI: 10.1016/j.jhazmat.2024.136718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Due to the multiple biotoxicity caused by perfluorooctanoic acid (PFOA), the application and production of PFOA is regulated globally. PFOA substitutes including hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide dimer acid (HFPO-DA) have been applied to industrial processes and subsequently detected in surface and groundwater, yet there is a lack of comprehensive assessment of their toxicity to aquatic organisms. Therefore, under the same time and same experimental conditions, the toxic effects and differences of PFOA, HFPO-TA, and HFPO-DA on zebrafish adults and embryos were assessed from oxidative damage, apoptosis, immune function impairment, and protein interactions. The HFPO-TA and HFPO-DA caused more severe oxidative damage than PFOA. While PFOA only disrupted immune function in adults, HFPO-TA and HFPO-DA affected immune homeostasis in both adults and embryos. Integrated biomarker response results showed that superoxide dismutase (SOD) activity and reactive oxygen species content could be used as early warning indicators of toxicity in adults and embryos, respectively. Molecular docking simulations identified HFPO-TA as having the lowest binding energy with SOD proteins, thereby exerting the greatest effect on SOD activity. Compared to PFOA, HFPO-TA and HFPO-DA exhibited a greater toxicological response and, therefore, may not be suitable substitutes for PFOA.
Collapse
Affiliation(s)
- Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Xiao Yang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
2
|
Folkerson AP, Mabury SA. A Comparative Biodegradation Study to Assess the Ultimate Fate of Novel Highly Functionalized Hydrofluoroether Alcohols in Wastewater Treatment Plant Microcosms and Surface Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2297-2305. [PMID: 38131503 DOI: 10.1002/etc.5815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of chemicals present in a wide range of commercial and consumer products due to their water-repellency, nonstick, or surfactant properties, resulting from their chemical and thermal stability. This stability, however, often leads to persistence in the environment when they are inevitability released. We utilized microbial microcosms from wastewater treatment plant (WWTP) sludge to determine how employing different functional groups such as heteroatom linkages, varying chain lengths, and hydrofluoroethers (HFEs) will impact the ultimate fate of these novel PFAS structures. A suite of five novel fluorosurfactant building blocks (F7C3OCHFCF2SCH2CH2OH (FESOH), F3COCHFCF2SCH2CH2OH (MeFESOH), F7C3OCHFCF2OCH2CH2OH (ProFdiEOH), F7C3OCHFCF2CH2OH (ProFEOH), and F3COCHFCF2OCH2CH2OH (MeFdiEOH)) and their select transformation products, were incubated in WWTP aerobic microcosms to determine structure-activity relationships. The HFE alcohol congeners with a thioether (FESOH and MeFESOH) were observed to transform faster than the ether congeners, while also producing second-generation HFE acid products (F7C3OCHFC(O)OH (2H-3:2 polyfluoroalkyl ether carboxylic acid [PFECA]) and F3COCHFC(O)OH (2H-1:2 PFECA). Subsequent biodegradation experiments with 2H-1:2 PFESA and 2H-1:2 PFECA displayed no further transformation over 74 days. Surface water Photofate experiments compared 2H-1:2 PFECA, and 2H-1:2 polyfluorinated ether sulfonate (PFESA) with their fully fluorinated ether acid counterparts, and demonstrated the potential for both HFE acid species to completely mineralize over extended periods of time, a fate that highlights the value of studying novel PFAS functionalization. Environ Toxicol Chem 2024;43:2297-2305. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Andrew P Folkerson
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Robarts DR, Paine-Cabrera D, Kotulkar M, Venneman KK, Gunewardena S, Foquet L, Bial G, Apte U. Identifying novel mechanisms of per- and polyfluoroalkyl substance-induced hepatotoxicity using FRG humanized mice. Arch Toxicol 2024; 98:3063-3075. [PMID: 38782768 DOI: 10.1007/s00204-024-03789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) and perfluoro-2-methyl-3-oxahexanoic acid (GenX), the new replacement PFAS, are major environmental contaminants. In rodents, these PFAS induce several adverse effects on the liver, including increased proliferation, hepatomegaly, steatosis, hypercholesterolemia, nonalcoholic fatty liver disease and liver cancers. Activation of peroxisome proliferator receptor alpha by PFAS is considered the primary mechanism of action in rodent hepatocyte-induced proliferation. However, the human relevance of this mechanism is uncertain. We investigated human-relevant mechanisms of PFAS-induced adverse hepatic effects using FRG liver-chimeric humanized mice with livers repopulated with functional human hepatocytes. Male FRG humanized mice were treated with 0.067 mg/L of PFOA, 0.145 mg/L of PFOS, or 1 mg/L of GenX in drinking water for 28 days. PFOS caused a significant decrease in total serum cholesterol and LDL/VLDL, whereas GenX caused a significant elevation in LDL/VLDL with no change in total cholesterol and HDL. All three PFAS induced significant hepatocyte proliferation. RNA-sequencing with alignment to the human genome showed a total of 240, 162, and 619 differentially expressed genes after PFOA, PFOS, and GenX exposure, respectively. Upstream regulator analysis revealed that all three PFAS induced activation of p53 and inhibition of androgen receptor and NR1D1, a transcriptional repressor important in circadian rhythm. Further biochemical studies confirmed NR1D1 inhibition and in silico modeling indicated potential interaction of all three PFAS with the DNA-binding domain of NR1D1. In conclusion, our studies using FRG humanized mice have revealed new human-relevant molecular mechanisms of PFAS including their previously unknown effect on circadian rhythm.
Collapse
Affiliation(s)
- Dakota R Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MS1018, Kansas City, KS, 66160, USA
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MS1018, Kansas City, KS, 66160, USA
| | - Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MS1018, Kansas City, KS, 66160, USA
| | - Kaitlyn K Venneman
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MS1018, Kansas City, KS, 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Greg Bial
- Yecuris Corporation, Tualatin, OR, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MS1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Pesonen M, Vähäkangas K. Involvement of per- and polyfluoroalkyl compounds in tumor development. Arch Toxicol 2024; 98:1241-1252. [PMID: 38478087 PMCID: PMC10965717 DOI: 10.1007/s00204-024-03685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic persistent chemicals, which are used in many industrial and commercial applications. Hundreds of different PFAS have been identified in the environment and they are commonly found also in human blood. Due to the chemical stability and extensive use, PFAS pose a risk for human health and wildlife. Mounting evidence indicates that PFAS-exposure adversely affects many organs including liver, kidney, and reproductive tissues and induces tumors in laboratory rodents. Epidemiological studies show association between PFAS-exposure and some tumors also in humans. Effects of PFAS-exposure are complex and obviously do not depend only on the concentration and the structure of PFAS, but also on age and sex of the exposed individuals. It has been difficult to show a causal link between PFAS-exposure and tumors. Moreover, molecular mechanisms of the PFAS effects in different tissues are poorly understood. PFAS are not directly mutagenic and they do not induce formation of DNA binding metabolites, and thus are assumed to act more through non-genotoxic mechanisms. In this review, we discuss the involvement of PFAS-compounds in tumor development in tissues where PFAS exposure has been associated with cancer in epidemiological and animal studies (liver, kidney, testicle and breast). We will focus on molecular pathways and mechanisms related to tumor formation following PFAS-exposure.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
5
|
Treschow AF, Valente MJ, Lauschke K, Holst B, Andersen AR, Vinggaard AM. Investigating the applicability domain of the hiPSC-based PluriLum assay: an embryotoxicity assessment of chemicals and drugs. Arch Toxicol 2024; 98:1209-1224. [PMID: 38311648 PMCID: PMC10944425 DOI: 10.1007/s00204-023-03675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
To meet the growing demand for developmental toxicity assessment of chemicals, New Approach Methodologies (NAMs) are needed. Previously, we developed two 3D in vitro assays based on human-induced pluripotent stem cells (hiPSC) and cardiomyocyte differentiation: the PluriBeat assay, based on assessment of beating differentiated embryoid bodies, and the PluriLum assay, a reporter gene assay based on the expression of the early cardiac marker NKX2.5; both promising assays for predicting embryotoxic effects of chemicals and drugs. In this work, we aimed to further describe the predictive power of the PluriLum assay and compare its sensitivity with PluriBeat and similar human stem cell-based assays developed by others. For this purpose, we assessed the toxicity of a panel of ten chemicals from different chemical classes, consisting of the known developmental toxicants 5-fluorouracil, all-trans retinoic acid and valproic acid, as well as the negative control compounds ascorbic acid and folic acid. In addition, the fungicides epoxiconazole and prochloraz, and three perfluoroalkyl substances (PFAS), PFOS, PFOA and GenX were tested. Generally, the PluriLum assay displayed higher sensitivity when compared to the PluriBeat assay. For several compounds the luminescence readout of the PluriLum assay showed effects not detected by the PluriBeat assay, including two PFAS compounds and the two fungicides. Overall, we find that the PluriLum assay has the potential to provide a fast and objective detection of developmental toxicants and has a level of sensitivity that is comparable to or higher than other in vitro assays also based on human stem cells and cardiomyocyte differentiation for assessment of developmental toxicity.
Collapse
Affiliation(s)
- Andreas Frederik Treschow
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Maria João Valente
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karin Lauschke
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- Cell Therapy TRU, Novo Nordisk A/S, Måløv, Denmark
| | | | - Anders Reenberg Andersen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Marie Vinggaard
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
6
|
Tsai HHD, Ford LC, Chen Z, Dickey AN, Wright FA, Rusyn I. Risk-based prioritization of PFAS using phenotypic and transcriptomic data from human induced pluripotent stem cell-derived hepatocytes and cardiomyocytes. ALTEX 2024; 41:363-381. [PMID: 38429992 PMCID: PMC11305846 DOI: 10.14573/altex.2311031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are chemicals with important applications; they are persistent in the environment and may pose human health hazards. Regulatory agencies are considering restrictions and bans of PFAS; however, little data exists for informed decisions. Several prioritization strategies were proposed for evaluation of potential hazards of PFAS. Structure-based grouping could expedite the selection of PFAS for testing; still, the hypothesis that structure-effect relationships exist for PFAS requires confirmation. We tested 26 structurally diverse PFAS from 8 groups using human induced pluripotent stem cell-derived hepatocytes and cardiomyocytes, and tested concentration-response effects on cell function and gene expression. Few phenotypic effects were observed in hepatocytes, but negative chronotropy was observed in cardiomyocytes for 8 PFAS. Substance- and cell type-dependent transcriptomic changes were more prominent but lacked substantial group-specific effects. In hepatocytes, we found upregulation of stress-related and extracellular matrix organization pathways, and down-regulation of fat metabolism. In cardiomyocytes, contractility-related pathways were most affected. We derived phenotypic and transcriptomic points of departure and compared them to predicted PFAS exposures. Conservative estimates for bioactivity and exposure were used to derive a bioactivity-to-exposure ratio (BER) for each PFAS; 23 of 26 PFAS had BER > 1. Overall, these data suggest that structure-based PFAS grouping may not be sufficient to predict their biological effects. Testing of individual PFAS may be needed for scientifically-supported decision-making. Our proposed strategy of using two human cell types and considering phenotypic and transcriptomic effects, combined with dose-response analysis and calculation of BER, may be used for PFAS prioritization.
Collapse
Affiliation(s)
- Han-Hsuan D Tsai
- Interdisciplinary Faculty of Toxicology, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Lucie C Ford
- Interdisciplinary Faculty of Toxicology, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Zunwei Chen
- Interdisciplinary Faculty of Toxicology, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
- Current address: Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allison N Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Fred A Wright
- Interdisciplinary Faculty of Toxicology, College Station, TX, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Shi W, Zhang Z, Li X, Chen J, Liang X, Li J. GenX Disturbs the Indicators of Hepatic Lipid Metabolism Even at Environmental Concentration in Drinking Water via PPARα Signaling Pathways. Chem Res Toxicol 2024; 37:98-108. [PMID: 38150050 DOI: 10.1021/acs.chemrestox.3c00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA; trade name GenX), as a substitute for perfluorooctanoic acid (PFOA), has been attracting increasing attention. However, its impact and corresponding mechanism on hepatic lipid metabolism are less understood. To investigate the possible mechanisms of GenX for hepatotoxicity, a series of in vivo and in vitro experiments were conducted. In in vivo experiment, male mice were exposed to GenX in drinking water at environmental concentrations (0.1 and 10 μg/L) and high concentrations (1 and 100 mg/L) for 14 weeks. In in vitro experiments, human hepatocellular carcinoma cells (HepG2) were exposed to GenX at 10, 160, and 640 μM for 24 and 48 h. GenX exposure via drinking water resulted in liver damage and disruption of lipid metabolism even at environmental concentrations. The results of triglycerides (TG) and total cholesterol (TC) in this study converged with the results of the population study, for which TG increased in the liver but unchanged in the serum, whereas TC increased in both liver and serum concentrations. KEGG and GO analyses revealed that the hepatotoxicity of GenX was associated with fatty acid transport, synthesis, and oxidation pathways and that Peroxisome Proliferator-Activated Receptor (PPARα) contributed significantly to this process. PPARα inhibitors significantly reduced the expression of CD36, CPT1β, PPARα, SLC27A1, ACOX1, lipid droplets, and TC, suggesting that GenX exerts its toxic effects through PPARα signaling pathway. In general, GenX at environmental concentrations in drinking water causes abnormal lipid metabolism via PPARα signaling pathway.
Collapse
Affiliation(s)
- Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zengli Zhang
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xinyu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jingsi Chen
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiaojun Liang
- Center for Disease Control and Prevention of Kunshan, Kunshan 215301, China
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Almeida NMS, Bali SK, James D, Wang C, Wilson AK. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to the PPARγ/RXRα-DNA Complex. J Chem Inf Model 2023; 63:7423-7443. [PMID: 37990410 DOI: 10.1021/acs.jcim.3c01384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Nuclear receptors are the fundamental building blocks of gene expression regulation and the focus of many drug targets. While binding to DNA, nuclear receptors act as transcription factors, governing a multitude of functions in the human body. Peroxisome proliferator-activator receptor γ (PPARγ) and the retinoid X receptor α (RXRα) form heterodimers with unique properties and have a primordial role in insulin sensitization. This PPARγ/RXRα heterodimer has been shown to be impacted by per- and polyfluoroalkyl substances (PFAS) and linked to a variety of significant health conditions in humans. Herein, a selection of the most common PFAS (legacy and emerging) was studied utilizing molecular dynamics simulations for PPARγ/RXRα. The local and global structural effects of PFAS binding on the known ligand binding pockets of PPARγ and RXRα as well as the DNA binding domain (DBD) of RXRα were inspected. The binding free energies were predicted computationally and were compared between the different binding pockets. In addition, two electronic structure approaches were utilized to model the interaction of PFAS within the DNA binding domain, density functional theory (DFT) and domain-based pair natural orbital coupled cluster with perturbative triples (DLPNO-CCSD(T)) approaches, with implicit solvation. Residue decomposition and hydrogen-bonding analysis were also performed, detailing the role of prominent residues in molecular recognition. The role of l-carnitine is explored as a potential in vivo remediation strategy for PFAS interaction with the PPARγ/RXRα heterodimer. In this work, it was found that PFAS can bind and act as agonists for all of the investigated pockets. For the first time in the literature, PFAS are postulated to bind to the DNA binding domain in a nonspecific manner. In addition, for the PPARγ ligand binding domain, l-carnitine shows promise in replacing smaller PFAS from the pocket.
Collapse
Affiliation(s)
- Nuno M S Almeida
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Semiha Kevser Bali
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Deepak James
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Cong Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
9
|
Folkerson AP, Schneider SR, Abbatt JPD, Mabury SA. Avoiding Regrettable Replacements: Can the Introduction of Novel Functional Groups Move PFAS from Recalcitrant to Reactive? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17032-17041. [PMID: 37877468 DOI: 10.1021/acs.est.3c06232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are present in a range of commercial and consumer products. These chemicals are often high-performance surfactants or nonstick/water-repellant coatings due to their chemical stability; however, this stability leads to select PFAS being environmentally persistent. To facilitate degradation, new fluorosurfactant building blocks (F7C3-O-CHF-CF2-S-CH2-CH2-OH (FESOH), F3C-O-CHF-CF2-S-CH2-CH2-OH (MeFESOH), F7C3-O-CHF-CF2-O-CH2-CH2-OH (ProFdiEOH), F7C3-O-CHF-CF2-CH2-OH (ProFEOH), and F3C-O-CHF-CF2-O-CH2-CH2-OH (MeFdiEOH)) have been systematically developed with heteroatom linkages such as ethers, thioethers, and polyfluorinated carbons. The room temperature, gas-phase OH oxidation rate constants, and products of these chemicals were monitored in an atmospheric chamber to investigate their fate in the atmosphere. Analysis was performed using online high-resolution chemical ionization mass spectrometry (CIMS) using the iodide reagent ion and via offline UPLC-MS/MS. FESOH and MeFESOH, the thioether congeners, were observed to have the largest rate constants of kFESOH = 2.82 (±0.33) and kMeFESOH = 2.17 (±0.17) (×10-12 cm3 molecules-1 s-1, respectively). First-, second-, and third-generation products of OH oxidation were observed as a function of time, while product quantification yielded ultrashort perfluoropropionic acid (PFPrA) and short polyfluoroether acid species as the terminal products for FESOH and ProFdiEOH. There was evidence for MeFESOH being fully mineralized, demonstrating the potential benign chemical architecture.
Collapse
Affiliation(s)
- Andrew P Folkerson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Stephanie R Schneider
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
10
|
Robarts DR, Kotulkar M, Paine-Cabrera D, Venneman KK, Hanover JA, Zachara NE, Slawson C, Apte U. The essential role of O-GlcNAcylation in hepatic differentiation. Hepatol Commun 2023; 7:e0283. [PMID: 37930118 PMCID: PMC10629742 DOI: 10.1097/hc9.0000000000000283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/15/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND O-GlcNAcylation is a post-translational modification catalyzed by the enzyme O-GlcNAc transferase, which transfers a single N-acetylglucosamine sugar from UDP-GlcNAc to the protein on serine and threonine residues on proteins. Another enzyme, O-GlcNAcase (OGA), removes this modification. O-GlcNAcylation plays an important role in pathophysiology. Here, we report that O-GlcNAcylation is essential for hepatocyte differentiation, and chronic loss results in fibrosis and HCC. METHODS Single-cell RNA-sequencing (RNA-seq) was used to investigate hepatocyte differentiation in hepatocyte-specific O-GlcNAc transferase-knockout (OGT-KO) mice with decreased hepatic O-GlcNAcylation and in O-GlcNAcase-KO mice with increased O-GlcNAcylation in hepatocytes. Patients HCC samples and the diethylnitrosamine-induced HCC model were used to investigate the effect of modulation of O-GlcNAcylation on the development of liver cancer. RESULTS Loss of hepatic O-GlcNAcylation resulted in disruption of liver zonation. Periportal hepatocytes were the most affected by loss of differentiation, characterized by dysregulation of glycogen storage and glucose production. O-GlcNAc transferase-KO mice exacerbated diethylnitrosamine-induced HCC development with increased inflammation, fibrosis, and YAP signaling. Consistently, O-GlcNAcase -KO mice with increased hepatic O-GlcNAcylation inhibited diethylnitrosamine-induced HCC. A progressive loss of O-GlcNAcylation was observed in patients with HCC. CONCLUSIONS Our study shows that O-GlcNAcylation is a critical regulator of hepatic differentiation, and loss of O-GlcNAcylation promotes hepatocarcinogenesis. These data highlight increasing O-GlcNAcylation as a potential therapy in chronic liver diseases, including HCC.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kaitlyn K. Venneman
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Molecular Biology, NIDDK, NIH, Bethesda, Maryland, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
11
|
Liu M, Yi S, Yu H, Zhang T, Dong F, Zhu L. Underlying Mechanisms for the Sex- and Chemical-Specific Hepatotoxicity of Perfluoroalkyl Phosphinic Acids in Common Carp ( Cyprinus carpio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14515-14525. [PMID: 37728733 DOI: 10.1021/acs.est.3c04964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The hepatotoxicities of perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been extensively investigated, while little is known about the sex-specific differences. In this study, common carp were exposed to the emerging perfluoroalkyl phosphinic acids (6:6 and 8:8 PFPiAs) for 14 days to disclose sex-specific hepatotoxicity. Apparent hepatotoxicity, including cell necrosis, apoptosis, and steatosis, was observed in both male and female carp liver. The observed hepatocyte steatosis was predominantly attributed to the dysregulation of hepatic lipid metabolism but was based on sex-specific mechanisms. It was manifested as inhibited oxidative decomposition of fatty acids (FAs) in the female liver, whereas it enhanced the uptake of FAs into the male liver, both of which led to excessive lipid accumulation. Untargeted lipidomics validated that the metabolism pathways of FA, sphingolipid, glycerolipid, and glycerophospholipid were disrupted by both compounds, leading to the generation of reactive oxygen species and oxidative stress. The oxidative stress further evolved into inflammation, manifested as promoted expression of proinflammatory cytokines and repressed expression of anti-inflammatory cytokines. Consistently, all of the changes were more noticeable in male carp, suggesting that male fish were more susceptible to PFPiA disruption. 8:8 PFPiA was less accumulated but caused stronger hepatotoxicity than 6:6 PFPiA, possibly because of the stronger binding capacity of 8:8 PFPiA to nuclear transcription factors mediating lipid metabolism and inflammation. The findings of this study highlight the significance of sex- and chemical-dependent bioaccumulation and the toxicity of PFASs in organisms.
Collapse
Affiliation(s)
- Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
12
|
Abstract
Hepatocyte nuclear factor 4 α (HNF4α) is a highly conserved member of the nuclear receptor superfamily expressed at high levels in the liver, kidney, pancreas, and gut. In the liver, HNF4α is exclusively expressed in hepatocytes, where it is indispensable for embryonic and postnatal liver development and for normal liver function in adults. It is considered a master regulator of hepatic differentiation because it regulates a significant number of genes involved in hepatocyte-specific functions. Loss of HNF4α expression and function is associated with the progression of chronic liver disease. Further, HNF4α is a target of chemical-induced liver injury. In this review, we discuss the role of HNF4α in liver pathophysiology and highlight its potential use as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
13
|
Khan EA, Grønnestad R, Krøkje Å, Bartosov Z, Johanson SM, Müller MHB, Arukwe A. Alteration of hepato-lipidomic homeostasis in A/J mice fed an environmentally relevant PFAS mixture. ENVIRONMENT INTERNATIONAL 2023; 173:107838. [PMID: 36822005 DOI: 10.1016/j.envint.2023.107838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
In the present study, we have investigated liver lipid homeostasis and corresponding changes in transcript and functional product levels in A/J mice exposed to environmental relevant concentration of per- and polyfluoroalkyl substances (PFAS) mixture. Mice were fed environmentally relevant concentrations of a PFAS mixture during a period of 10 weeks. The concentrations of the 8 individual PFAS in the mixture were chosen based on measured concentrations in earthworms at a Norwegian skiing area. Our data show high liver accumulation of ∑PFAS in exposed mice, which paralleled significant elevation in body weight and hepatosomatic index (HSI) of male mice. UPC2 -MS/MS analysis in both positive and negative mode, respectively, indicated significant differences between control and exposure groups in the liver of exposed mice. Principal component analysis (PCA) of the features revealed separation of control and exposure groups in both sexes. From the significantly differential 207 lipids, only 72 were identified and shown to belong to eight different lipid classes. PCA of fatty acids (FAs) profile showed a clear separation between control and PFAS exposure groups in both female and male mice, with differential abundant levels of 5 and 4 hydrolyzed FAs, respectively. Transcript and protein analysis of genes associated with lipid homeostasis (ppar-α and β, lxr-α and β, rxr, fasn and srebp) showed that PFAS exposure produced sex- and individual response related alterations. Glutathione reductase (Gr) activity showed exposure-related changes in both female and male mice, compared with controls. Overall, the present study has demonstrated changes in lipid metabolism after PFAS exposure, showing that PFAS accumulation in the liver resulted to hepatotoxic effects, potential interference with membrane lipid profile and homeostasis, and oxidative stress. Given the structural similarity with FAs, interaction between PFAS and nuclear receptors such as PPARs may have severe consequences for general health and physiology in exposed animals and humans.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Randi Grønnestad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zdenka Bartosov
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Silje Modahl Johanson
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Mette H B Müller
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
14
|
Robarts DR, Kotulkar M, Paine-Cabrera D, Venneman KK, Hanover JA, Zachara NE, Slawson C, Apte U. The Essential Role of O-GlcNAcylation in Hepatic Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528884. [PMID: 36824917 PMCID: PMC9949138 DOI: 10.1101/2023.02.16.528884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Background & Aims O-GlcNAcylation is a post-translational modification catalyzed by the enzyme O-GlcNAc transferase (OGT), which transfers a single N-acetylglucosamine sugar from UDP-GlcNAc to the protein on serine and threonine residues on proteins. Another enzyme, O-GlcNAcase (OGA), removes this modification. O-GlcNAcylation plays an important role in pathophysiology. Here, we report that O-GlcNAcylation is essential for hepatocyte differentiation, and chronic loss results in fibrosis and hepatocellular carcinoma. Methods Single-cell RNA-sequencing was used to investigate hepatocyte differentiation in hepatocyte-specific OGT-KO mice with increased hepatic O-GlcNAcylation and in OGA-KO mice with decreased O-GlcNAcylation in hepatocytes. HCC patient samples and the DEN-induced hepatocellular carcinoma (HCC) model were used to investigate the effect of modulation of O-GlcNAcylation on the development of liver cancer. Results Loss of hepatic O-GlcNAcylation resulted in disruption of liver zonation. Periportal hepatocytes were the most affected by loss of differentiation characterized by dysregulation of glycogen storage and glucose production. OGT-KO mice exacerbated DEN-induced HCC development with increased inflammation, fibrosis, and YAP signaling. Consistently, OGA-KO mice with increased hepatic O-GlcNAcylation inhibited DEN-induced HCC. A progressive loss of O-GlcNAcylation was observed in HCC patients. Conclusions Our study shows that O-GlcNAcylation is a critical regulator of hepatic differentiation, and loss of O-GlcNAcylation promotes hepatocarcinogenesis. These data highlight increasing O-GlcNAcylation as a potential therapy in chronic liver diseases, including HCC.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kaitlyn K. Venneman
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Molecular Biology, NIDDK, NIH, Bethesda, MD, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
15
|
Robarts DR, Paine-Cabrera D, Kotulkar M, Venneman KK, Gunewardena S, Corton JC, Lau C, Foquet L, Bial G, Apte U. Identifying Human Specific Adverse Outcome Pathways of Per- and Polyfluoroalkyl Substances Using Liver-Chimeric Humanized Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526711. [PMID: 36778348 PMCID: PMC9915685 DOI: 10.1101/2023.02.01.526711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants with myriad adverse effects. While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most common contaminants, levels of replacement PFAS, such as perfluoro-2-methyl-3-oxahexanoic acid (GenX), are increasing. In rodents, PFOA, PFOS, and GenX have several adverse effects on the liver, including nonalcoholic fatty liver disease. Objective We aimed to determine human-relevant mechanisms of PFAS induced adverse hepatic effects using FRG liver-chimeric humanized mice with livers repopulated with functional human hepatocytes. Methods Male humanized mice were treated with 0.067 mg/L of PFOA, 0.145 mg/L of PFOS, or 1 mg/L of GenX in drinking water for 28 days. Liver and serum were collected for pathology and clinical chemistry, respectively. RNA-sequencing coupled with pathway analysis was used to determine molecular mechanisms. Results PFOS caused a significant decrease in total serum cholesterol and LDL/VLDL, whereas GenX caused a significant elevation in LDL/VLDL with no change in total cholesterol and HDL. PFOA had no significant changes in serum LDL/VLDL and total cholesterol. All three PFAS induced significant hepatocyte proliferation. RNA-sequencing with alignment to the human genome showed a total of 240, 162, and 619 differentially expressed genes after PFOA, PFOS, and GenX exposure, respectively. Upstream regulator analysis revealed inhibition of NR1D1, a transcriptional repressor important in circadian rhythm, as the major common molecular change in all PFAS treatments. PFAS treated mice had significant nuclear localization of NR1D1. In silico modeling showed PFOA, PFOS, and GenX potentially interact with the DNA-binding domain of NR1D1. Discussion These data implicate PFAS in circadian rhythm disruption via inhibition of NR1D1. These studies show that FRG humanized mice are a useful tool for studying the adverse outcome pathways of environmental pollutants on human hepatocytes in situ.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Kaitlyn K. Venneman
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC
| | - Christopher Lau
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Research Triangle Park, NC
| | | | | | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|