1
|
Liu D, Huang Y, Mao J, Jiang C, Zheng L, Wu Q, Cai H, Liu X, Dai J. A nanohybrid synthesized by polymeric assembling Au(I)-peptide precursor for anti-wrinkle function. Front Bioeng Biotechnol 2022; 10:1087363. [PMID: 36578506 PMCID: PMC9790933 DOI: 10.3389/fbioe.2022.1087363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
A major sign of aging is wrinkles (dynamic lines and static lines) on the surface of the skin. In spite of Botulinum toxin's favorable therapeutic effect today, there have been several reports of its toxicity and side effects. Therefore, the development of an effective and safe wrinkle-fighting compound is imperative. An antioxidant-wrinkle effect was demonstrated by the peptide that we developed and synthesized, termed Skin Peptide. Aiming at the intrinsic defects of the peptide such as hydrolysis and poor membrane penetration, we developed a general approach to transform the Skin Peptide targeting intracellular protein-protein interaction into a bioavailable peptide-gold spherical nano-hybrid, Skin Pcluster. As expected, the results revealed that Skin Pcluster reduced the content of acetylcholine released by neurons in vitro, and then inhibit neuromuscular signal transmission. Additionally, human experiments demonstrated a significant de-wrinkle effect. Moreover, Skin Pcluster is characterized by a reliable safety profile. Consequently, anti-wrinkle peptides and Skin Pcluster nanohybrids demonstrated innovative anti-wrinkle treatments and have significant potential applications.
Collapse
Affiliation(s)
- Dan Liu
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| | - Jian Mao
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Cheng Jiang
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Lei Zheng
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Qimei Wu
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Hong Cai
- Air Force Medical Center, Beijing, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| | - Xiaojing Liu
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| | - Jingyao Dai
- Air Force Medical Center, Beijing, China,Air Force Medical Center, Fourth Military Medical University, Xi’an, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| |
Collapse
|
2
|
Aso K, Walsh DA, Wada H, Izumi M, Tomitori H, Fujii K, Ikeuchi M. Time course and localization of nerve growth factor expression and sensory nerve growth during progression of knee osteoarthritis in rats. Osteoarthritis Cartilage 2022; 30:1344-1355. [PMID: 35843479 DOI: 10.1016/j.joca.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Nerve growth factor (NGF) and sensory nerves are key factors in established osteoarthritis (OA) knee pain. We investigated the time course of NGF expression and sensory nerve growth across early and late stages of OA progression in rat knees. DESIGN Knee OA was induced by medial meniscectomy in rats. OA histopathology, NGF expression, and calcitonin gene-related peptide immunoreactive (CGRP-IR) nerves were quantified pre-surgery and post-surgery at weeks 1, 2, 4 and 6. Pain-related behavior was evaluated using dynamic weight distribution and mechanical sensitivity of the hind paw. RESULTS NGF expression in chondrocytes increased from week 1 and remained elevated until the advanced stage. In synovium, NGF expression increased only in early stages, whereas in osteochondral channels and bone marrow, NGF expression increased in the later stages of OA progression. CGRP-IR nerve density in suprapatellar pouch peaked at week 4 and decreased at week 6, whereas in osteochondral channels and bone marrow, CGRP-IR innervation increased through week 6. Percent ipsilateral weight-bearing decreased throughout the OA time course, whereas reduced paw withdrawal thresholds were observed only in later stages. CONCLUSION During progression of knee OA, time-dependent alterations of NGF expression and CGRP-IR sensory innervation are knee tissue specific. NGF expression increased in early stages and decreased in advanced stage in the synovium but continued to increase in osteochondral channels and bone marrow. Increases in CGRP- IR sensory innervation followed increases in NGF expression, implicating that NGF is a key driver of articular nerve growth associated with OA pain.
Collapse
Affiliation(s)
- K Aso
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan.
| | - D A Walsh
- Pain Centre Versus Arthritis & NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG5 1PB, UK
| | - H Wada
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan
| | - M Izumi
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan
| | - H Tomitori
- Pfizer Japan Inc., 7-22-3 Yoyogi Shibuya-ku Tokyo, Japan
| | - K Fujii
- Pfizer Japan Inc., 7-22-3 Yoyogi Shibuya-ku Tokyo, Japan
| | - M Ikeuchi
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan
| |
Collapse
|
3
|
Périer C, Martin V, Cornet S, Favre‐Guilmard C, Rocher M, Bindler J, Wagner S, Andriambeloson E, Rudkin B, Marty R, Vignaud A, Beard M, Lezmi S, Kalinichev M. Recombinant botulinum neurotoxin serotype A1 in vivo characterization. Pharmacol Res Perspect 2021; 9:e00857. [PMID: 34632725 PMCID: PMC8502944 DOI: 10.1002/prp2.857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Clinically used botulinum neurotoxins (BoNTs) are natural products of Clostridium botulinum. A novel, recombinant BoNT type A1 (rBoNT/A1; IPN10260) has been synthesized using the native amino acid sequence expressed in Escherichia coli and has previously been characterized in vitro and ex vivo. Here, we aimed to characterize rBoNT/A1 in vivo and evaluate its effects on skeletal muscle. The properties of rBoNT/A1 following single, intramuscular administration were evaluated in the mouse and rat digit abduction score (DAS) assays and compared with those of natural BoNT/A1 (nBoNT/A1). rBoNT/A1-injected tibialis anterior was assessed in the in situ muscle force test in rats. rBoNT/A1-injected gastrocnemius lateralis (GL) muscle was assessed in the compound muscle action potential (CMAP) test in rats. The rBoNT/A1-injected GL muscle was evaluated for muscle weight, volume, myofiber composition and immunohistochemical detection of cleaved SNAP25 (c-SNAP25). Results showed that rBoNT/A1 and nBoNT/A1 were equipotent and had similar onset and duration of action in both mouse and rat DAS assays. rBoNT/A1 caused a dose-dependent inhibition of muscle force and a rapid long-lasting reduction in CMAP amplitude that lasted for at least 30 days. Dose-dependent reductions in GL weight and volume and increases in myofiber atrophy were accompanied by immunohistochemical detection of c-SNAP25. Overall, rBoNT/A1 and nBoNT/A1 exhibited similar properties following intramuscular administration. rBoNT/A1 inhibited motoneurons neurotransmitter release, which was robust, long-lasting, and accompanied by cleavage of SNAP25. rBoNT/A1 is a useful tool molecule for comparison with current natural and future modified recombinant neurotoxins products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Brian Rudkin
- CARPACCIO.cloudLyonFrance
- Univ Lyon, Université Lyon 1, INSERMStem Cell and Brain Research Institute U120BronFrance
| | | | | | | | | | | |
Collapse
|