1
|
AlShammari AK, Abd El-Aziz TM, Al-Sabi A. Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels. Toxins (Basel) 2023; 16:12. [PMID: 38251229 PMCID: PMC10820993 DOI: 10.3390/toxins16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The venom derived from various sources of snakes represents a vast collection of predominantly protein-based toxins that exhibit a wide range of biological actions, including but not limited to inflammation, pain, cytotoxicity, cardiotoxicity, and neurotoxicity. The venom of a particular snake species is composed of several toxins, while the venoms of around 600 venomous snake species collectively encompass a substantial reservoir of pharmacologically intriguing compounds. Despite extensive research efforts, a significant portion of snake venoms remains uncharacterized. Recent findings have demonstrated the potential application of neurotoxins derived from snake venom in selectively targeting voltage-gated potassium channels (Kv). These neurotoxins include BPTI-Kunitz polypeptides, PLA2 neurotoxins, CRISPs, SVSPs, and various others. This study provides a comprehensive analysis of the existing literature on the significance of Kv channels in various tissues, highlighting their crucial role as proteins susceptible to modulation by diverse snake venoms. These toxins have demonstrated potential as valuable pharmacological resources and research tools for investigating the structural and functional characteristics of Kv channels.
Collapse
Affiliation(s)
- Altaf K. AlShammari
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ahmed Al-Sabi
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| |
Collapse
|
2
|
Tang X, Yu D, Wang H, Meng W, Zhai Y, Lei Z, Liu Z, Wang X. Pull-Down Assay-Guided Insights into the Effects of Latroeggtoxin-VI on Nerve Cells. Toxins (Basel) 2021; 13:136. [PMID: 33673184 PMCID: PMC7918074 DOI: 10.3390/toxins13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Latroeggtoxin-VI (LETX-VI) is a peptide neurotoxin newly found from the eggs of spider L. tredecimguttatus. To explore the mechanism of action of the LETX-VI on nerve cells, the effects of LETX-VI on PC12 cells, a commonly used neuron model, were analyzed using a pull-down assay-guided strategy. LETX-VI was shown to interact with 164 PC12 cell proteins that have diverse molecular functions such as binding, catalysis, regulation, structural activity, etc., thereby extensively affecting the biological processes in the PC12 cells, particularly protein metabolism, response to stimulus, substance transport, and nucleic acid metabolism, with 56.71%, 42.07%, 29.88% and 28.66% of the identified proteins being involved in these biological processes, respectively. By interacting with the relevant proteins, LETX-VI enhanced the synthesis of dopamine; positively regulated cell division and proliferation; and negatively regulated cell cycle arrest, cell death, and apoptotic processes, and therefore has limited cytotoxicity against the PC12 cells, which were further experimentally confirmed. In general, the effects of LETX-VI on PC12 cells are more regulatory than cytotoxic. These findings have deepened our understanding of the action mechanism of LETX-VI on nerve cells and provided valuable clues for further related researches including those on Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (X.T.); (D.Y.); (H.W.); (W.M.); (Y.Z.); (Z.L.); (Z.L.)
| |
Collapse
|
3
|
Boldrini-França J, Pinheiro-Junior EL, Peigneur S, Pucca MB, Cerni FA, Borges RJ, Costa TR, Carone SEI, Fontes MRDM, Sampaio SV, Arantes EC, Tytgat J. Beyond hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor activities. Sci Rep 2020; 10:4476. [PMID: 32161292 PMCID: PMC7066243 DOI: 10.1038/s41598-020-61258-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Snake venom serine proteases (SVSPs) are complex and multifunctional enzymes, acting primarily on hemostasis. In this work, we report the hitherto unknown inhibitory effect of a SVSP, named collinein-1, isolated from the venom of Crotalus durissus collilineatus, on a cancer-relevant voltage-gated potassium channel (hEAG1). Among 12 voltage-gated ion channels tested, collinein-1 selectively inhibited hEAG1 currents, with a mechanism independent of its enzymatic activity. Corroboratively, we demonstrated that collinein-1 reduced the viability of human breast cancer cell line MCF7 (high expression of hEAG1), but does not affect the liver carcinoma and the non-tumorigenic epithelial breast cell lines (HepG2 and MCF10A, respectively), which present low expression of hEAG1. In order to obtain both functional and structural validation of this unexpected discovery, where an unusually large ligand acts as an inhibitor of an ion channel, a recombinant and catalytically inactive mutant of collinein-1 (His43Arg) was produced and found to preserve its capability to inhibit hEAG1. A molecular docking model was proposed in which Arg79 of the SVSP 99-loop interacts directly with the potassium selectivity filter of the hEAG1 channel.
Collapse
Affiliation(s)
- Johara Boldrini-França
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.,University of Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista II, 29102-920, Vila Velha, ES, Brazil
| | - Ernesto Lopes Pinheiro-Junior
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.,Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, PO 922, 3000, Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, PO 922, 3000, Leuven, Belgium
| | - Manuela Berto Pucca
- Medical School of Roraima, Federal University of Roraima, Av. Capitão Ene Garcez, 2413, Bairro Aeroporto, 69310-970, Boa Vista, RR, Brazil
| | - Felipe Augusto Cerni
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Rafael Junqueira Borges
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, 250, 18618-689, Botucatu, SP, Brazil
| | - Tássia Rafaella Costa
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Sante Emmanuel Imai Carone
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Marcos Roberto de Mattos Fontes
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, 250, 18618-689, Botucatu, SP, Brazil
| | - Suely Vilela Sampaio
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, PO 922, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Impact of Different Serum Potassium Levels on Postresuscitation Heart Function and Hemodynamics in Patients with Nontraumatic Out-of-Hospital Cardiac Arrest. Bioinorg Chem Appl 2018; 2018:5825929. [PMID: 29849540 PMCID: PMC5907484 DOI: 10.1155/2018/5825929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/25/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background Sustained return of spontaneous circulation (ROSC) can be initially established in patients with out-of-hospital cardiac arrest (OHCA); however, the early postresuscitation hemodynamics can still be impaired by high levels of serum potassium (hyperkalemia). The impact of different potassium levels on early postresuscitation heart function has remained unclear. We aim to analyze the relationship between different levels of serum potassium and postresuscitation heart function during the early postresuscitation period (the first hour after achieving sustained ROSC). Methods Information on 479 nontraumatic OHCA patients with sustained ROSC was retrospectively obtained. Measures of early postresuscitation heart function (rate, blood pressure, and rhythm), hemodynamics (urine output and blood pH), and the duration of survival were analyzed in the case of different serum potassium levels (low: <3.5; normal: 3.5–5; high: >5 mmol/L). Results Most patients (59.9%, n = 287) had previously presented with high levels of potassium. Bradycardia, nonsinus rhythm, urine output <1 ml/kg/hr, and acidosis (pH < 7.35) were more common in patients with high levels of potassium (all p < 0.05). Compared with hyperkalemia, a normal potassium level was more likely to be associated with a normal heart rate (OR: 2.97, 95% CI: 1.74–5.08) and sinus rhythm (OR: 2.28, 95% CI: 1.45–3.58). A low level of potassium was more likely to be associated with tachycardia (OR: 3.54, 95% CI: 1.32–9.51), urine output >1 ml/kg/hr (OR: 5.35, 95% CI: 2.58–11.10), and nonacidosis (blood pH >7.35, OR: 7.74, 95% CI: 3.78–15.58). The duration of survival was shorter in patients with hyperkalemia than that in patients whose potassium levels were low or normal (p < 0.05). Conclusion Early postresuscitation heart function and hemodynamics were associated with the serum potassium level. A high potassium level was more likely to be associated with bradycardia, nonsinus rhythm, urine output <1 ml/kg/hr, and acidosis. More importantly, a high potassium level decreased the duration of survival.
Collapse
|
6
|
Wu PF, Chang LS, Kao YL, Wang KT. Beta-Bungarotoxin induction of neurite outgrowth in NB41A3 cells. Toxicon 2008; 52:354-60. [PMID: 18619988 DOI: 10.1016/j.toxicon.2008.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/20/2008] [Accepted: 06/05/2008] [Indexed: 01/05/2023]
Abstract
In this study, different concentrations of beta-Bgt were used to treat cultured NB41A3 cells. Inverted phase contrast microscopy was then used 24h after treatment to observe the outgrowth of neurite. We found a clear outgrowth of neurite at beta-Bgt concentrations of 357 nM. However, using a cytotoxicity assay to study apoptosis, we found no significant difference in the rate of cell death in cell cultures treated with either 357 nM or 714 nM. Western blotting showed that after treatment with beta-Bgt, there was a notable decrease in small G protein Cdc42 and a marked increase in RhoA protein. Flow cytometry revealed that beta-Bgt did not alter the calcium influx in NB41A3 cells. The neurite outgrowth induced by beta-Bgt was not affected by extracellular EGTA, suggesting that the internalization of beta-Bgt from extracellular was independent of phospholipase. Taken together, our results suggest the beta-Bgt-induced outgrowth of neurite from NB41A3 cells may be mediated by small G proteins.
Collapse
Affiliation(s)
- Pei-Fung Wu
- Department of Kinesiology, Health and Leisure Studies, National Kaohsiung University, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
7
|
Yu L, Sun C, Mendoza R, Wang J, Matayoshi ED, Hebert E, Pereda-Lopez A, Hajduk PJ, Olejniczak ET. Solution structure and calcium-binding properties of EF-hands 3 and 4 of calsenilin. Protein Sci 2008; 16:2502-9. [PMID: 17962406 DOI: 10.1110/ps.072928007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Calsenilin is a member of the recoverin branch of the EF-hand superfamily that is reported to interact with presenilins, regulate prodynorphin gene expression, modulate voltage-gated Kv4 potassium channel function, and bind to neurotoxins. Calsenilin is a Ca+2-binding protein and plays an important role in calcium signaling. Despite its importance in numerous neurological functions, the structure of this protein has not been reported. In the absence of Ca+2, the protein has limited spectral resolution that increases upon the addition of Ca+2. Here, we describe the three-dimensional solution structure of EF-hands 3 and 4 of calsenilin in the Ca+2-bound form. The Ca+2-bound structure consists of five alpha-helices and one two-stranded antiparallel beta-sheet. The long loop that connects EF hands 3 and 4 is highly disordered in solution. In addition to its structural effects, Ca+2 binding also increases the protein's propensity to dimerize. These changes in structure and oligomerization state induced upon Ca+2 binding may play important roles in molecular recognition during calcium signaling.
Collapse
Affiliation(s)
- Liping Yu
- Pharmaceutical Discovery Division, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6098, USA
| | | | | | | | | | | | | | | | | |
Collapse
|