1
|
David AC, Silva LMG, Garcia Denegri ME, Leiva LCA, Silva Junior JA, Zuliani JP, Zamuner SR. Photobiomodulation therapy on local effects induced by juvenile and adult venoms of Bothrops alternatus. Toxicon 2022; 220:106941. [DOI: 10.1016/j.toxicon.2022.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
2
|
Bothrops moojeni snake venom induces an inflammatory response in preadipocytes: Insights into a new aspect of envenomation. PLoS Negl Trop Dis 2022; 16:e0010658. [PMID: 35939519 PMCID: PMC9359566 DOI: 10.1371/journal.pntd.0010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Bothrops envenomation is a public health problem in Brazil. Despite the advances in the knowledge of the pathogenesis of systemic and local effects induced by Bothrops venom, the target tissues to this venom are not completely characterised. As preadipocytes are important cells of the adipose tissue and synthesize inflammatory mediators, we investigated the ability of B. moojeni snake venom (Bmv) to stimulate an inflammatory response in 3T3-L1 preadipocytes in vitro, focusing on (1) the release of PGE2, IL-6, TNF-α, MCP-1, KC, leptin and adiponectin; (2) the mechanisms involved in PGE2 release and (3) differentiation of these cells. Cytotoxicity of Bmv was determined by MTT assay. The concentrations of PGE2, cytokines and adipokines were quantified by EIA. Participation of the COX-1 and COX-2 enzymes, NF-κB and PGE2 receptors (EP1-4) was assessed using a pharmacological approach, and protein expression of the COX enzymes and P-NF-κB was analysed by western blotting. Preadipocyte differentiation was quantified by Oil Red O staining. Bmv (1 μg/mL) induced release of PGE2, IL-6 and KC and increased expression of COX-2 in preadipocytes. Basal levels of TNF-α, MCP-1, leptin and adiponectin were not modified. Treatment of cells with SC560 (COX-1 inhibitor) and NS398 (COX-2 inhibitor) inhibited Bmv-induced PGE2 release. Bmv induced phosphorylation of NF-κB, and treatment of the cells with TPCK and SN50, which inhibit distinct NF-κB domains, significantly reduced Bmv-induced PGE2 release, as did the treatment with an antagonist of PGE2 receptor EP1, unlike treatment with antagonists of EP2, EP3 or EP4. Bmv also induced lipid accumulation in differentiating cells. These results demonstrate that Bmv can activate an inflammatory response in preadipocytes by inducing the release of inflammatory mediators; that PGE2 production is mediated by the COX-1, COX-2 and NF-κB pathways; and that engagement of EP1 potentiates PGE2 synthesis via a positive feedback mechanism. Our findings highlight the role of the adipose tissue as another target for Bmv and suggest that it contributes to Bothrops envenomation by producing inflammatory mediators.
Collapse
|
3
|
Moreira V, Leiguez E, Janovits PM, Maia-Marques R, Fernandes CM, Teixeira C. Inflammatory Effects of Bothrops Phospholipases A 2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins (Basel) 2021; 13:toxins13120868. [PMID: 34941706 PMCID: PMC8709003 DOI: 10.3390/toxins13120868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipases A2s (PLA2s) constitute one of the major protein groups present in the venoms of viperid and crotalid snakes. Snake venom PLA2s (svPLA2s) exhibit a remarkable functional diversity, as they have been described to induce a myriad of toxic effects. Local inflammation is an important characteristic of snakebite envenomation inflicted by viperid and crotalid species and diverse svPLA2s have been studied for their proinflammatory properties. Moreover, based on their molecular, structural, and functional properties, the viperid svPLA2s are classified into the group IIA secreted PLA2s, which encompasses mammalian inflammatory sPLA2s. Thus, research on svPLA2s has attained paramount importance for better understanding the role of this class of enzymes in snake envenomation and the participation of GIIA sPLA2s in pathophysiological conditions and for the development of new therapeutic agents. In this review, we highlight studies that have identified the inflammatory activities of svPLA2s, in particular, those from Bothrops genus snakes, which are major medically important snakes in Latin America, and we describe recent advances in our collective understanding of the mechanisms underlying their inflammatory effects. We also discuss studies that dissect the action of these venom enzymes in inflammatory cells focusing on molecular mechanisms and signaling pathways involved in the biosynthesis of lipid mediators and lipid accumulation in immunocompetent cells.
Collapse
Affiliation(s)
- Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Rodrigo Maia-Marques
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Cristina Maria Fernandes
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
- Correspondence:
| |
Collapse
|
4
|
Maia-Marques R, Nascimento IMR, Lauria PSS, Silva ECPD, Silva DF, Casais-E-Silva LL. Inflammatory mediators in the pronociceptive effects induced by Bothrops leucurus snake venom: The role of biogenic amines, nitric oxide, and eicosanoids. Toxicology 2020; 448:152649. [PMID: 33259823 DOI: 10.1016/j.tox.2020.152649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Bothrops leucurus is the major causative agent of venomous snakebites in Northeastern Brazil. Severe pain is the most frequent symptom in these envenomings, with an important inflammatory component. This work characterized the pronociceptive effects evoked by B. leucurus venom (BLV) in mice and the role of inflammatory mediators in these responses. The nociceptive behaviors were quantified by the modified formalin test. The mechanical hyperalgesia was assessed by the digital von Frey test. Pharmacological assays were performed with different antagonists and synthesis inhibitors to investigate the involvement of inflammatory mediators in both nociceptive events. BLV (1-15 μg/paw) injection in mice evoked intense and dose-dependent nociceptive behaviors that lasted for up to 1 h. BLV (10 μg/paw) also caused sustained mechanical hyperalgesia. Histamine and serotonin played a role in the nociception, but not in the BLV-induced mechanical hyperalgesia. Nitric oxide contributed to both responses, but only to the late stages of mechanical hyperalgesia. Eicosanoids were also present in both nociceptive responses. Prostanoid synthesis by COX-1 seemed to be more relevant for the nociception, whereas COX-2 had a more prominent role in the mechanical hyperalgesia. Leukotrienes were the most relevant mediators of BLV-induced mechanical hyperalgesia, hence inhibiting lipoxygenase pathway could be an efficient therapeutic strategy for pain management during envenoming. Our behavioral data demonstrates that BLV promotes nociceptive transmission mediated by biogenic amines, nitric oxide and eicosanoids, and nociceptor sensitization through nitric oxide and eicosanoids. Moreover, phospholipases A2 (PLA2), an important class of toxins present in bothropic venoms, appear to play an important role in the nociceptive and hypernociceptive response induced by BLV.
Collapse
Affiliation(s)
- Rodrigo Maia-Marques
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Igor M R Nascimento
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Pedro S S Lauria
- Laboratory of Pharmacology and Experimental Therapeutics, Federal University of Bahia, Salvador, BA, Brazil.
| | - Ellen C P da Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Darizy F Silva
- Laboratory of Endocrine and Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Luciana L Casais-E-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
5
|
First report on BaltCRP, a cysteine-rich secretory protein (CRISP) from Bothrops alternatus venom: Effects on potassium channels and inflammatory processes. Int J Biol Macromol 2019; 140:556-567. [DOI: 10.1016/j.ijbiomac.2019.08.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
|
6
|
Cedro RCA, Menaldo DL, Costa TR, Zoccal KF, Sartim MA, Santos-Filho NA, Faccioli LH, Sampaio SV. Cytotoxic and inflammatory potential of a phospholipase A 2 from Bothrops jararaca snake venom. J Venom Anim Toxins Incl Trop Dis 2018; 24:33. [PMID: 30498509 PMCID: PMC6251196 DOI: 10.1186/s40409-018-0170-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022] Open
Abstract
Background Snake venom phospholipases A2 (PLA2s) have been reported to induce myotoxic, neurotoxic, hemolytic, edematogenic, cytotoxic and proinflammatory effects. This work aimed at the isolation and functional characterization of a PLA2 isolated from Bothrops jararaca venom, named BJ-PLA2-I. Methods and Results For its purification, three consecutive chromatographic steps were used (Sephacryl S-200, Source 15Q and Mono Q 5/50 GL). BJ-PLA2-I showed acidic characteristics, with pI~ 4.4 and molecular mass of 14.2 kDa. Sequencing resulted in 60 amino acid residues that showed high similarity to other Bothrops PLA2s, including 100% identity with BJ-PLA2, an Asp49 PLA2 previously isolated from B. jararaca venom. Being an Asp49 PLA2, BJ-PLA2-I showed high catalytic activity, and also inhibitory effects on the ADP-induced platelet aggregation. Its inflammatory characterization showed that BJ-PLA2-I was able to promote leukocyte migration in mice at different concentrations (5, 10 and 20 μg/mL) and also at different response periods (2, 4 and 24 h), mainly by stimulating neutrophil infiltration. Furthermore, increased levels of total proteins, IL-6, IL-1β and PGE2 were observed in the inflammatory exudate induced by BJ-PLA2-I, while nitric oxide, TNF-α, IL-10 and LTB4 levels were not significantly altered. This toxin was also evaluated for its cytotoxic potential on normal (PBMC) and tumor cell lines (HL-60 and HepG2). Overall, BJ-PLA2-I (2.5–160 μg/mL) promoted low cytotoxicity, with cell viabilities mostly varying between 70 and 80% and significant values obtained for HL-60 and PBMC only at the highest concentrations of the toxin evaluated. Conclusions BJ-PLA2-I was characterized as an acidic Asp49 PLA2 that induces acute local inflammation and low cytotoxicity. These results should contribute to elucidate the action mechanisms of snake venom PLA2s.
Collapse
Affiliation(s)
- Rafhaella C A Cedro
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Danilo L Menaldo
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Tássia R Costa
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Karina F Zoccal
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Marco A Sartim
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Norival A Santos-Filho
- 2Campus Experimental de Registro, Universidade Estadual Paulista (UNESP), Registro, SP Brazil
| | - Lúcia H Faccioli
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Suely V Sampaio
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
7
|
Zoccal KF, Ferreira GZ, Prado MK, Gardinassi LG, Sampaio SV, Faccioli LH. LTB4 and PGE2 modulate the release of MIP-1α and IL-1β by cells stimulated with Bothrops snake venoms. Toxicon 2018; 150:289-296. [DOI: 10.1016/j.toxicon.2018.06.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 10/14/2022]
|
8
|
Yacoub T, Rima M, Sadek R, Hleihel W, Fajloun Z, Karam M. Montivipera bornmuelleri venom has immunomodulatory effects mainly up-regulating pro-inflammatory cytokines in the spleens of mice. Toxicol Rep 2018; 5:318-323. [PMID: 29854600 PMCID: PMC5977382 DOI: 10.1016/j.toxrep.2018.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
Beside their toxicity, snake venom components possess several pharmacological effects and have been used to design many drugs. Recently, the cytotoxic, antibacterial, vasorelaxant, pro- and anti-coagulant as well as inflammatory activities of Montivipera bornmuelleri venom have been described in vitro. However, the in vivo effects of this Lebanese snake venom on the immune system has not been established yet. Here, we investigate the immunomodulatory effects of M. bornmuelleri venom on the murine splenic levels of TNF-α, IFN-γ, IL-4, IL-10, IL-1ß and IL-17 at 6 and 24 h post treatment. Different doses of the venom (1 mg/kg, 2 mg/kg, 4 mg/kg and 6 mg/kg) were injected intraperitoneally in BALB/c mice. Using the logit method, LD50 of M. bornmuelleri was proved to be 1.92 mg/kg in our experimental conditions. This study also shows that 1 mg/kg and 2 mg/kg of M. bornmuelleri venom are able to modulate the levels of cytokines in the spleen of mice, as assessed by ELISA. In fact, this snake's venom up-regulates TNF-α, IFN-γ, IL-1ß and IL-17 with a trend in decreasing IL-4 and IL-10. Therefore, by favoring Th1 and Th17 over Th2 and Treg responses, M. bornmuelleri venom might have important clinical implication especially in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Tania Yacoub
- Department of Biology, University of Balamand, Kourah, Lebanon
| | - Mohamad Rima
- Sorbonne Universités, Department of Neuroscience, Institute of Biology Paris-Seine, CNRS UMR 8246, INSERM U1130, F-75005 Paris, France
| | - Riyad Sadek
- Department of Biology, American University of Beirut, Lebanon
| | | | - Ziad Fajloun
- Department of Biology, Faculty of Sciences III, Lebanese University, Lebanon.,Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its Applications, Doctoral School of Sciences and Technology, Tripoli, Lebanon
| | - Marc Karam
- Department of Biology, University of Balamand, Kourah, Lebanon
| |
Collapse
|
9
|
Kendre PP, Jose MP, Varghese AM, Menon JC, Joseph JK. Capillary leak syndrome in Daboia russelii bite-a complication associated with poor outcome. Trans R Soc Trop Med Hyg 2018; 112:88-93. [PMID: 29584906 DOI: 10.1093/trstmh/try026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Capillary leak syndrome (CLS) has been previously observed as a complication of Daboia russelii bite but not clearly defined or studied in length. This observational case-control study evaluates the mortality along with associated clinical and laboratory features. Methods Twenty-five patients who developed CLS were compared with 25 patients without CLS following Daboia russelii (Russell's viper) bite. Results Development of CLS is associated with a significantly high risk of mortality; 11 (44%) patients with CLS died compared with 1 (4%) control (odds ratio 18.8 [95% confidence interval 2.2 to 161.99], p=0.002). Disease-defining manifestations included myalgia (22 [88%]), thirst (20 [80%]), parotid swelling (15 [60%]), conjunctival chemosis (19 [76%]) and hypotension (22 [88%]), which were unobserved in controls. Although several clinical and laboratory parameters were found to be predictive for development of CLS in univariate analysis, none of them had independent predictive value in multivariate analysis. Similarly, development of parotid swelling was the only factor with independent predictive value for mortality in multivariate analysis. Even though the number of vials of snake antivenom used is more in CLS, it seems unlikely to improve the mortality in CLS. Conclusions This study proves that CLS is a well-defined complication of Russell's viper bite with high mortality but with clear predictors for the development of CLS and mortality.
Collapse
Affiliation(s)
- Pradip P Kendre
- Department of General Medicine, Little Flower Hospital and Research Centre, Angamaly, Kochi, Kerala 683572, India
| | - Manoj P Jose
- Department of General Medicine, Little Flower Hospital and Research Centre, Angamaly, Kochi, Kerala 683572, India
| | - Abraham M Varghese
- Department of General Medicine, Little Flower Hospital and Research Centre, Angamaly, Kochi, Kerala 683572, India
| | - Jaideep C Menon
- Department of General Medicine, Little Flower Hospital and Research Centre, Angamaly, Kochi, Kerala 683572, India
| | - Joseph K Joseph
- Department of General Medicine, Little Flower Hospital and Research Centre, Angamaly, Kochi, Kerala 683572, India
| |
Collapse
|
10
|
Udayabhaskaran V, Arun Thomas ET, Shaji B. Capillary Leak Syndrome Following Snakebite Envenomation. Indian J Crit Care Med 2017; 21:698-702. [PMID: 29142382 PMCID: PMC5672676 DOI: 10.4103/ijccm.ijccm_41_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Capillary leak syndrome is a unique complication that follows Russell's viper envenomation. This syndrome has a very high fatality rate and is characterized by parotid swelling, chemosis, periorbital edema, hypotension, albuminuria, hypoalbuminemia, and hemoconcentration. This syndrome is frequently recognized from the southern parts of India, especially from the state of Kerala. It has been postulated that a vascular apoptosis inducing component of Russell's viper venom that is not neutralized by the commercially available anti-snake venom (ASV) is responsible for this complication as it occurs even after adequate doses of ASV administration in most cases. Acute kidney injury often requiring dialysis is invariably present in all patients because of reduced renal perfusion and ischemic acute tubular necrosis as a result of hypotension. Management mainly involves aggressive fluid resuscitation to maintain adequate tissue perfusion. There are no other proven effective treatment modalities, except a few reports of successful treatment with plasmapheresis. Methylprednisolone pulse therapy, terbutaline, aminophylline, and intravenous immunoglobulin are other treatment modalities tried.
Collapse
Affiliation(s)
- V Udayabhaskaran
- Department of Internal Medicine, Malabar Medical College, Kozhikode, Kerala, India
| | - E T Arun Thomas
- Department of Nephrology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Bhagya Shaji
- Department of Neurology, Government Medical College, Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Stone SF, Isbister GK, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam A, Jacoby-Alner TE, Cotterell CL, Brown SGA. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation. PLoS Negl Trop Dis 2013; 7:e2326. [PMID: 23936562 PMCID: PMC3723557 DOI: 10.1371/journal.pntd.0002326] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/12/2013] [Indexed: 01/09/2023] Open
Abstract
Background Snake bite is one of the most neglected public health issues in poor rural communities worldwide. In addition to the clinical effects of envenoming, treatment with antivenom frequently causes serious adverse reactions, including hypersensitivity reactions (including anaphylaxis) and pyrogenic reactions. We aimed to investigate the immune responses to Sri Lankan snake envenoming (predominantly by Russell's viper) and antivenom treatment. Methodology/Principal Findings Plasma concentrations of Interleukin (IL)-6, IL-10, tumor necrosis factor α (TNFα), soluble TNF receptor I (sTNFRI), anaphylatoxins (C3a, C4a, C5a; markers of complement activation), mast cell tryptase (MCT), and histamine were measured in 120 Sri Lankan snakebite victims, both before and after treatment with antivenom. Immune mediator concentrations were correlated with envenoming features and the severity of antivenom-induced reactions including anaphylaxis. Envenoming was associated with complement activation and increased cytokine concentrations prior to antivenom administration, which correlated with non-specific systemic symptoms of envenoming but not with coagulopathy or neurotoxicity. Typical hypersensitivity reactions to antivenom occurred in 77/120 patients (64%), satisfying criteria for a diagnosis of anaphylaxis in 57/120 (48%). Pyrogenic reactions were observed in 32/120 patients (27%). All patients had further elevations in cytokine concentrations, but not complement activation, after the administration of antivenom, whether a reaction was noted to occur or not. Patients with anaphylaxis had significantly elevated concentrations of MCT and histamine. Conclusions/Significance We have demonstrated that Sri Lankan snake envenoming is characterized by significant complement activation and release of inflammatory mediators. Antivenom treatment further enhances the release of inflammatory mediators in all patients, with anaphylactic reactions characterised by high levels of mast cell degranulation but not further complement activation. Anaphylaxis is probably triggered by non allergen-specific activation of mast cells and may be related to the quality of available antivenom preparations, as well as a priming effect from the immune response to the venom itself. Snakebites cause life-threatening symptoms including uncontrolled bleeding and paralysis. The body's immune responses to snake venom may contribute to the severity of these symptoms but have not been well characterized in humans. Treatment with antivenom is potentially lifesaving, but also carries risk, as severe allergic reactions (anaphylaxis) are common. Anaphylaxis occurs when mast cells, triggered by either allergen-specific antibodies, other immunological mechanisms, or non-immune mechanisms, release mediators that cause skin rashes, shortness of breath and, in severe cases, life-threatening hypotension and/or hypoxia. We have studied 120 snakebite victims in Sri Lanka, both before and after treatment with antivenom. Our results have shown snakebite triggers activation of the complement cascade (an important part of the body's innate immune defence) and production of proinflammatory mediators. In addition, we have demonstrated a quite astonishing level of immune activation after antivenom treatment in virtually every person treated, regardless of whether they had a reaction to the antivenom. Half of the patients treated experienced anaphylaxis, with clear evidence of mast cell activation. Anaphylaxis to antivenom is unlikely to be triggered by allergen-specific antibodies, as patients had not been previously exposed to antivenom, but may be related to the quality of available antivenom preparations, as well as a priming effect from the immune response to the venom itself.
Collapse
Affiliation(s)
- Shelley F Stone
- Centre for Clinical Research in Emergency Medicine, Western Australian Institute for Medical Research and the University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Santhosh MS, Sundaram MS, Sunitha K, Kemparaju K, Girish KS. Viper venom-induced oxidative stress and activation of inflammatory cytokines: a therapeutic approach for overlooked issues of snakebite management. Inflamm Res 2013; 62:721-31. [PMID: 23657249 DOI: 10.1007/s00011-013-0627-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/02/2013] [Accepted: 04/23/2013] [Indexed: 11/24/2022] Open
|
13
|
The crucial role of the MyD88 adaptor protein in the inflammatory response induced by Bothrops atrox venom. Toxicon 2013; 67:37-46. [PMID: 23474268 DOI: 10.1016/j.toxicon.2013.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/12/2013] [Indexed: 12/12/2022]
Abstract
Most snake accidents in North Brazil are attributed to Bothrops atrox, a snake species of the Viperidae family whose venom simultaneously induces local and systemic effects in the victims. The former are clinically more important than the latter, as they cause severe tissue lesions associated with strong inflammatory responses. Although several studies have shown that inflammatory mediators are produced in response to B. atrox venom (BaV), there is little information concerning the molecular pathways involved in innate immune system signaling. Myeloid differentiation factor 88 (MyD88) is an adaptor molecule responsible for transmitting intracellular signals from most toll-like receptors (TLRs) after they interact with pathogen-associated molecular patterns (PAMPs) or other stimuli such as endogenous damage-associated molecular patterns (DAMPs). The MyD88-dependent pathway leads to activation of transcription factors, which in turn induce synthesis of inflammatory mediators such as eicosanoids, cytokines and chemokines. The aim of this study was to investigate the involvement of MyD88 on the acute inflammatory response induced by BaV. Wild-type (WT) C57BL/6 mice and MyD88 knockout (MyD88(-/-)) mice were intraperitoneally injected with BaV. Compared to WT mice, MyD88(-/-) animals showed an impaired inflammatory response to BaV, with lower influx of polymorphonuclear and mononuclear cells to the peritoneal cavity. Furthermore, peritoneal leukocytes from BaV-injected MyD88(-/-) mice did not induce COX-2 or LTB4 protein expression and released low concentrations of PGE2. These mice also failed to produce Th1 and Th17 cytokines and CCL-2, but IL-10 levels were similar to those of BaV-injected WT mice. Our results indicate that MyD88 signaling is required for activation of the inflammatory response elicited by BaV, raising the possibility of developing new therapeutic targets to treat Bothrops sp. poisoning.
Collapse
|
14
|
Moreira V, Dos-Santos MC, Nascimento NG, Borges da Silva H, Fernandes CM, D'Império Lima MR, Teixeira C. Local inflammatory events induced by Bothrops atrox snake venom and the release of distinct classes of inflammatory mediators. Toxicon 2012; 60:12-20. [PMID: 22465491 DOI: 10.1016/j.toxicon.2012.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 12/11/2022]
Abstract
Bothrops atrox is responsible for most accidents involving snakes in the Brazilian Amazon and its venom induces serious systemic and local effects. The local effects are not neutralized effectively by commercial antivenoms, resulting in serious sequelae in individuals bitten by this species. This study investigates the local inflammatory events induced in mice by B. atrox venom (BaV), such as vascular permeability, leukocyte influx and the release of important inflammatory mediators such as cytokines, eicosanoids and the chemokine CCL-2, at the injection site. The effect of BaV on cyclooxygenase (COX-1 and COX-2) expression was also investigated. The results showed that intraperitoneal (i.p.) injection of BaV promoted a rapid and significant increase in vascular permeability, which reached a peak 1 h after venom administration. Furthermore, BaV caused leukocyte infiltration into the peritoneal cavity between 1 and 8 h after i.p. injection, with mononuclear leukocytes (MNs) predominating in the first 4 h, and polymorphonuclear leukocytes (PMNs) in the last 4 h. Increased protein expression of COX-2, but not of COX-1, was detected in leukocytes recruited in the first and fourth hours after injection of BaV. The venom caused the release of eicosanoids PGD₂, PGE₂, TXA₂ and LTB₄, cytokines TNF-α, IL-6, IL-10 and IL-12p70, but not IFN-γ, and chemokine CCL-2 at different times. The results show that BaV is able to induce an early increase in vascular permeability and a leukocyte influx to the injection site consisting mainly of MNs initially and PMNs during the later stages. These phenomena are associated with the production of cytokines, the chemokine CCL-2 and eicosanoids derived from COX-1 and COX-2.
Collapse
Affiliation(s)
- Vanessa Moreira
- Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil, 1500, CEP 05503-900, Sao Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Nadur-Andrade N, Barbosa AM, Carlos FP, Lima CJ, Cogo JC, Zamuner SR. Effects of photobiostimulation on edema and hemorrhage induced by Bothrops moojeni venom. Lasers Med Sci 2011; 27:65-70. [DOI: 10.1007/s10103-011-0914-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|
16
|
Moreira V, Gutiérrez JM, Amaral RB, Zamunér SR, Teixeira CDFP. Effects of Bothrops asper snake venom on the expression of cyclooxygenases and production of prostaglandins by peritoneal leukocytes in vivo, and by isolated neutrophils and macrophages in vitro. Prostaglandins Leukot Essent Fatty Acids 2009; 80:107-14. [PMID: 19155166 DOI: 10.1016/j.plefa.2008.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/07/2008] [Accepted: 11/17/2008] [Indexed: 11/29/2022]
Abstract
In this study, the ability of Bothrops asper snake venom (BaV) to increase the production of prostaglandins PGE(2) and PGD(2) was assessed in a mouse model in vivo and in inflammatory cells in vitro. In addition, the expressions of COX-1 and COX-2 were assessed. BaV induced an increment in the in vivo synthesis of PGE(2) and PGD(2), together with an enhanced expression of COX-2, but not of COX-1. However, enzymatic activities of COX-1 and COX-2 were increased. Incubation of isolated macrophages and neutrophils with a sub-cytotoxic concentration of BaV in vitro resulted in increased release of PGE(2) and PGD(2) by macrophages and PGE(2) by neutrophils, concomitantly with an increment in the expression of COX-2, but not of COX-1 by both cell types. Our results demonstrate the ability of BaV to promote the expression of COX-2 and to induce the synthesis of proinflammatory prostaglandins. Macrophages and neutrophils may be important targets for this venom under in vivo situation.
Collapse
Affiliation(s)
- Vanessa Moreira
- Laboratorio de Farmacologia, Instituto Butantan, Av. Vital Brasil, 1500, CEP 05503-900, Sao Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
17
|
Olivo RDA, Teixeira CFP, Wallace JL, Gutierrez JM, Zamuner SR. Role of cyclooxygenases in oedema-forming activity of bothropic venoms. Toxicon 2007; 49:670-7. [PMID: 17204299 DOI: 10.1016/j.toxicon.2006.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 11/08/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
The venoms of Bothrops asper (BaV) and Bothrops jararaca (BjV), two of the most medically important poisonous snakes of Latin America, cause pronounced oedema in the victims through poorly understood mechanisms. In the present study, we examined the possible role of cyclooxygenases (COX) in the genesis of mouse paw oedema caused by BaV and BjV injections. BaV at 2.5 microg/paw and BjV at 0.75 microg/paw induced significant oedema that persisted for up to 6h following subplantar injection. Treatment with indomethacin (2 mg/kg), rofecoxib, (10 mg/kg), or dexamethasone (2 mg/kg) significantly reduced the BaV- and BjV-induced oedema formation. Treatment with SC-560 (30 mg/kg) significantly reduced the oedema formation induced by BjV but had no effect on that induced by BaV. Both venoms induced significant increases in the levels of prostaglandin E(2) (PGE(2)) and the expression of COX-1 and COX-2 in paw tissue. The peak of oedema formation and PGE(2) release correlated with marked expression of COX-2 in the paw tissue. These results demonstrate that injection of BaV and BjV results in a rapid increase in oedema formation that is, at least partially, mediated by arachidonic acid metabolites formed by COX-2. In the case of BjV, COX-1-derived prostanoids also appear to contribute significantly to the inflammatory changes.
Collapse
Affiliation(s)
- Renata do A Olivo
- Laboratory of Pharmacology, Butantan Institute, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|