1
|
Qin C, Yang X, Zhang Y, Deng G, Huang X, Zuo Z, Sun F, Cao Z, Chen Z, Wu Y. Functional Characterization of a New Degradation Peptide BmTX4-P1 from Traditional Chinese Scorpion Medicinal Material. Toxins (Basel) 2023; 15:toxins15050340. [PMID: 37235373 DOI: 10.3390/toxins15050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Thermally processed Buthus martensii Karsch scorpion is an important traditional Chinese medical material that has been widely used to treat various diseases in China for over one thousand years. Our recent work showed that thermally processed Buthus martensii Karsch scorpions contain many degraded peptides; however, the pharmacological activities of these peptides remain to be studied. Here, a new degraded peptide, BmTX4-P1, was identified from processed Buthus martensii Karsch scorpions. Compared with the venom-derived wild-type toxin peptide BmTX4, BmTX4-P1 missed some amino acids at the N-terminal and C-terminal regions, while containing six conserved cysteine residues, which could be used to form disulfide bond-stabilized α-helical and β-sheet motifs. Two methods (chemical synthesis and recombinant expression) were used to obtain the BmTX4-P1 peptide, named sBmTX4-P1 and rBmTX4-P1. Electrophysiological experimental results showed that sBmTX4-P1 and rBmTX4-P1 exhibited similar activities to inhibit the currents of hKv1.2 and hKv1.3 channels. In addition, the experimental electrophysiological results of recombinant mutant peptides of BmTX4-P1 indicated that the two residues of BmTX4-P1 (Lys22 and Tyr31) were the key residues for its potassium channel inhibitory activity. In addition to identifying a new degraded peptide, BmTX4-P1, from traditional Chinese scorpion medicinal material with high inhibitory activities against the hKv1.2 and hKv1.3 channels, this study also provided a useful method to obtain the detailed degraded peptides from processed Buthus martensii Karsch scorpions. Thus, the study laid a solid foundation for further research on the medicinal function of these degraded peptides.
Collapse
Affiliation(s)
- Chenhu Qin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Xuhua Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gang Deng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zheng Zuo
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Zongyun Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2016; 127:46-78. [PMID: 27729239 DOI: 10.1016/j.neuropharm.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- David M Housley
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science & Engineering, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia
| | - Ernest A Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Queensland 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD, Australia
| |
Collapse
|
3
|
Eskandari G, Jolodar A, Seyfiabad Shapouri MR, Bahmainmehr A, Navidpour S. Production of Recombinant Alpha Neurotoxin of Scorpion Venom Mesobuthus eupeus and Analysis of its Immunogenicity. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e9666. [PMID: 24719721 PMCID: PMC3964439 DOI: 10.5812/ircmj.9666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 09/02/2013] [Accepted: 09/22/2013] [Indexed: 11/19/2022]
Abstract
Background: Scorpion venom is important and rich source of peptides, most of which have been widely used as pharmacological tools for unraveling structure-function relationship of various ion channels. Naturally occurring toxins can be also considered as lead compounds in the development of novel drugs. Objectives: In this context, the scorpion-derived peptide neurotoxins specific to sodium channels have shown promise as potential therapeutic targets for the treatment of various human diseases. Materials and Methods: A cDNA library from the extracted RNA was constructed using RT-PCR and semi-nested RT-PCR. DNA sequencing followed by phylogenetic analysis was applied to screen the cDNA library clones. For molecular characterization of the BMK gene we used cloning and recombinant protein expression techniques based on E.coli systems. Then we performed mice immunization and Western blot and Immunodot analyses. Results: A novel BMK neurotoxin has been cloned, expressed and characterized from the Iranian scorpion M. eupeus venom. We analyzed the recombinant BMK by immunoblotting with treated antiserum. The result showed that mice antiserum can react also with scorpion crude venom, so is able to recognize native BMK toxin. Conclusion: The newly produced recombinant protein BMK revealed to be immunogenic. Moreover, anti-BMK antibodies produced in mice were able to recognize both the recombinant BMK neurotoxin and the one in M. eupeus crude venome. Taken together, the molecular characterization and recombinant production of the Iranian scorpion M. eupeus venom component can serve as a new probe for further studies of sodium channels function and physiology. This provides a promising perspective for the future design of selective drugs, as well as for research of antivenom production.
Collapse
Affiliation(s)
- Ghafar Eskandari
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
- Corresponding Author: Ghafar Eskandari, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia. Tel: +98-37498241221, E-mail:
| | - Abbas Jolodar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chaamran Uiversity of Ahvaz, Ahvaz, IR Iran
| | | | - Ardeshir Bahmainmehr
- Department of Biotechnology-Molecular Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, IR Iran
| | - Shahrokh Navidpour
- Department Veterinary Parasitology, Razi Vaccine and Serum Research Institute, Karaj, IR Iran
| |
Collapse
|
4
|
Cologna CT, Peigneur S, Rustiguel JK, Nonato MC, Tytgat J, Arantes EC. Investigation of the relationship between the structure and function of Ts2, a neurotoxin from Tityus serrulatus venom. FEBS J 2012; 279:1495-504. [PMID: 22356164 DOI: 10.1111/j.1742-4658.2012.08545.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Scorpion toxins targeting voltage-gated sodium (Na(V)) channels are peptides that comprise 60-76 amino acid residues cross-linked by four disulfide bridges. These toxins can be divided in two groups (α and β toxins), according to their binding properties and mode of action. The scorpion α-toxin Ts2, previously described as a β-toxin, was purified from the venom of Tityus serrulatus, the most dangerous Brazilian scorpion. In this study, seven mammalian Na(V) channel isoforms (rNa(V)1.2, rNa(V)1.3, rNa(V)1.4, hNa(V)1.5, mNa(V)1.6, rNa(V)1.7 and rNa(V)1.8) and one insect Na(V) channel isoform (DmNa(V)1) were used to investigate the subtype specificity and selectivity of Ts2. The electrophysiology assays showed that Ts2 inhibits rapid inactivation of Na(V)1.2, Na(V)1.3, Na(V)1.5, Na(V)1.6 and Na(V)1.7, but does not affect Na(V)1.4, Na(V)1.8 or DmNa(V)1. Interestingly, Ts2 significantly shifts the voltage dependence of activation of Na(V)1.3 channels. The 3D structure of this toxin was modeled based on the high sequence identity (72%) shared with Ts1, another T. serrulatus toxin. The overall fold of the Ts2 model consists of three β-strands and one α-helix, and is arranged in a triangular shape forming a cysteine-stabilized α-helix/β-sheet (CSαβ) motif.
Collapse
Affiliation(s)
- Camila T Cologna
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Zhu S, Gao B, Deng M, Yuan Y, Luo L, Peigneur S, Xiao Y, Liang S, Tytgat J. Drosotoxin, a selective inhibitor of tetrodotoxin-resistant sodium channels. Biochem Pharmacol 2010; 80:1296-302. [PMID: 20637738 DOI: 10.1016/j.bcp.2010.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 12/24/2022]
Abstract
The design of animal toxins with high target selectivity has long been a goal in protein engineering. Based on evolutionary relationship between the Drosophila antifungal defensin (drosomycin) and scorpion depressant Na(+) channel toxins, we exploited a strategy to create a novel chimeric molecule (named drosotoxin) with high selectivity for channel subtypes, which was achieved by using drosomycin to substitute the structural core of BmKITc, a depressant toxin acting on both insect and mammalian Na(+) channels. Recombinant drosotoxin selectively inhibited tetrodotoxin-resistant (TTX-R) Na(+) channels in rat dorsal root ganglion (DRG) neurons with a 50% inhibitory concentration (IC(50)) of 2.6+/-0.5muM. This chimeric peptide showed no activity on K(+), Ca(2+) and TTX-sensitive (TTX-S) Na(+) channels in rat DRG neurons and Drosophila para/tipE channels at micromolar concentrations. Drosotoxin represents the first chimeric toxin and example of a non-toxic core scaffold with high selectivity on mammalian TTX-R Na(+) channels.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | | | | | | | | | | | | | | | | |
Collapse
|