1
|
Lacombe C, Aleman-Navaro E, Drujon T, Martinez-Osorio V, Sachon E, Melchy-Pérez E, Carlier L, Fajardo Brigido LE, Fleury Y, Piesse C, Gutiérrez-Escobedo G, De Las Peñas A, Castaño I, Desriac F, Beristain-Hernandez JL, Combadiere C, Rosenstein Y, Auvynet C. Characterization of a New Immunosuppressive and Antimicrobial Peptide, DRS-DA2, Isolated from the Mexican Frog, Pachymedusa dacnicolor. Int J Inflam 2024; 2024:2205864. [PMID: 38250663 PMCID: PMC10799709 DOI: 10.1155/2024/2205864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/21/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
Inflammatory and antimicrobial diseases constitute a major burden for society, and fighting them is a WHO strategic priority. Most of the treatments available to fight inflammatory diseases are anti-inflammatory drugs, such as corticosteroids or immunomodulators that lack cellular specificity and lead to numerous side effects. In addition to suppressing undesired inflammation and reducing disease progression, these drugs lessen the immune system protective functions. Furthermore, treating infectious diseases is more and more challenging due to the rise of microbial resistance to antimicrobial drugs. Thus, controlling the inflammatory process locally without compromising the ability to combat infections is an essential feature in the treatment of inflammatory diseases. We isolated three forms (DRS-DA2N, DRS-DA2NE, and DRS-DA2NEQ) of the same peptide, DRS-DA2, which belongs to the dermaseptin family, from the Mexican tree frog Pachymedusa dacnicolor. Interestingly, DRS-DA2N and DRS-DA2NEQ exhibit a dual activity by inducing the death of leukocytes as well as that of Gram-negative and Gram-positive bacteria, including multiresistant strains, without affecting other cells such as epithelial cells or erythrocytes. We showed that the death of both immune cells and bacteria is induced rapidly by DRS-DA2 and that the membrane is permeabilized, leading to the loss of membrane integrity. We also validated the capacity of DRS-DA2 to regulate the pool of inflammatory cells in vivo in a mouse model of noninfectious peritonitis. After the induction of peritonitis, a local injection of DRS-DA2N could decrease the number of inflammatory cells locally in the peritoneal cavity without inducing a systemic effect, as no changes in the number of inflammatory cells could be detected in blood or in the bone marrow. Collectively, these data suggest that this peptide could be a promising tool in the treatment of inflammatory diseases, such as inflammatory skin diseases, as it could reduce the number of inflammatory cells locally without suppressing the ability to combat infections.
Collapse
Affiliation(s)
- Claire Lacombe
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris, France
- Faculté des Sciences, Université Paris Est-Créteil Val de Marne, Créteil, France
| | - Estefania Aleman-Navaro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Posgrado de Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thierry Drujon
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris, France
| | - Veronica Martinez-Osorio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Posgrado de Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Emmanuelle Sachon
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris, France
- Plateforme MS3U Mass Spectrometry Sciences Sorbonne University, Fédération de Chimie Moléculaire de Paris Centre, FR2769, Sorbonne Université, Paris, France
| | - Erika Melchy-Pérez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ludovic Carlier
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris, France
| | - Lorena Elizabeth Fajardo Brigido
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Posgrado de Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yannick Fleury
- LUBEM EA 3882, IUT Quimper, Université de Bretagne Occidentale, Quimper, France
| | - Christophe Piesse
- Plateforme de Synthèse Peptidique, Institut de Biologie Paris-Seine (ISBS), Sorbonne Université, CNRS, Paris, France
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Florie Desriac
- LUBEM EA 3882, IUT Quimper, Université de Bretagne Occidentale, Quimper, France
| | - Jose Luis Beristain-Hernandez
- Hepatobiliary and Pancreatic Surgery Clinic, General Surgery Department La Raza National Medical Center, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Christophe Combadiere
- Sorbonne Université, Institut National de Santé et de Recherche Medicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Yvonne Rosenstein
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Constance Auvynet
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Mast DH, Checco JW, Sweedler JV. Advancing d-amino acid-containing peptide discovery in the metazoan. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140553. [PMID: 33002629 DOI: 10.1016/j.bbapap.2020.140553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/01/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
The discovery of enzyme-derived d-amino acid-containing peptides (DAACPs) that have physiological importance in the metazoan challenges previous assumptions about the homochirality of animal proteins while simultaneously revealing new analytical challenges in the structural and functional characterization of peptides. Most known DAACPs have been identified though laborious activity-guided purification studies or by homology to previously identified DAACPs. Peptide characterization experiments are increasingly dominated by high throughput mass spectrometry-based peptidomics, with stereochemistry rarely considered due to the technical challenges of identifying l/d isomerization. This review discusses the prevalence of enzyme-derived DAACPs among animals and the physiological consequences of peptide isomerization. Also highlighted are the analytical methods that have been applied for structural characterization/discovery of DAACPs, including results of several recent studies using non-targeted discovery methods for revealing novel DAACPs, strongly suggesting that more DAACPs remain to be uncovered.
Collapse
Affiliation(s)
- David H Mast
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
3
|
Proaño-Bolaños C, Blasco-Zúñiga A, Almeida JR, Wang L, Llumiquinga MA, Rivera M, Zhou M, Chen T, Shaw C. Unravelling the Skin Secretion Peptides of the Gliding Leaf Frog, Agalychnis spurrelli (Hylidae). Biomolecules 2019; 9:E667. [PMID: 31671555 PMCID: PMC6920962 DOI: 10.3390/biom9110667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Frog skin secretions contain medically-valuable molecules, which are useful for the discovery of new biopharmaceuticals. The peptide profile of the skin secretion of Agalychnis spurrelli has not been investigated; therefore, the structural and biological characterization of its compounds signify an inestimable opportunity to acquire new biologically-active chemical scaffolds. In this work, skin secretion from this amphibian was analysed by molecular cloning and tandem mass spectrometry. Although the extent of this work was not exhaustive, eleven skin secretion peptides belonging to five peptide families were identified. Among these, we report the occurrence of two phyllokinins, and one medusin-SP which were previously reported in other related species. In addition, eight novel peptides were identified, including four dermaseptins, DRS-SP2 to DRS-SP5, one phylloseptin-SP1, and three orphan peptides. Phylloseptin-SP1 and dermaseptins-SP2 were identified in HPLC fractions based on their molecular masses determined by MALDI-TOF MS. Among the antimicrobial peptides, dermaseptin-SP2 was the most potent, inhibiting Escherichia coli, Staphylococcus aureus, and ORSA with a minimum inhibitory concentration (MIC) of 2.68 μM, and Candida albicans with an MIC of 10.71 μM, without haemolytic effects. The peptides described in this study represent but a superficial glance at the considerable structural diversity of bioactive peptides produced in the skin secretion of A. spurrelli.
Collapse
Affiliation(s)
- Carolina Proaño-Bolaños
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, km 7 ½ vía Muyuna, Tena 150150, Ecuador.
| | - Ailín Blasco-Zúñiga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Av 12 de Octubre 1076 y Roca, Quito 170150, Ecuador.
| | - José Rafael Almeida
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, km 7 ½ vía Muyuna, Tena 150150, Ecuador.
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Miguel Angel Llumiquinga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Av 12 de Octubre 1076 y Roca, Quito 170150, Ecuador.
| | - Miryan Rivera
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Av 12 de Octubre 1076 y Roca, Quito 170150, Ecuador.
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
4
|
A Novel Bradykinin-Related Peptide, RVA-Thr 6-BK, from the Skin Secretion of the Hejiang Frog; Ordorrana hejiangensis: Effects of Mammalian Isolated Smooth Muscle. Toxins (Basel) 2019; 11:toxins11070376. [PMID: 31261655 PMCID: PMC6669471 DOI: 10.3390/toxins11070376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 01/10/2023] Open
Abstract
A novel naturally-occurring bradykinin-related peptide (BRP) with an N-terminal extension, named RVA-Thr6-Bradykinin (RVA-Thr6-BK), was here isolated and identified from the cutaneous secretion of Odorrana hejiangensis (O. hejiangensis). Thereafter, in order to evaluate the difference in myotropic actions, a leucine site-substitution variant from Amolops wuyiensis skin secretion, RVA-Leu1, Thr6-BK, was chemically synthesized. Myotropic studies indicated that single-site arginine (R) replacement by leucine (L) at position-4 from the N-terminus, altered the action of RVA-Thr6-BK from an agonist to an antagonist of BK actions on rat ileum smooth muscle. Additionally, both BK N-terminal extended derivatives (RVA-Thr6-BK and RVA-Leu1, Thr6-BK) exerted identical myotropic actions to BK, such as increasing the frequency of contraction, contracting and relaxing the rat uterus, bladder and artery preparations, respectively.
Collapse
|
5
|
Gao B, Zhu S. Mesobuthus Venom-Derived Antimicrobial Peptides Possess Intrinsic Multifunctionality and Differential Potential as Drugs. Front Microbiol 2018; 9:320. [PMID: 29599756 PMCID: PMC5863496 DOI: 10.3389/fmicb.2018.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/09/2018] [Indexed: 11/15/2022] Open
Abstract
Animal venoms are a mixture of peptides and proteins that serve two basic biological functions: predation and defense against both predators and microbes. Antimicrobial peptides (AMPs) are a common component extensively present in various scorpion venoms (herein abbreviated as svAMPs). However, their roles in predation and defense against predators and potential as drugs are poorly understood. Here, we report five new venom peptides with antimicrobial activity from two Mesobuthus scorpion species. These α-helical linear peptides displayed highly bactericidal activity toward all the Gram-positive bacteria used here but differential activity against Gram-negative bacteria and fungi. In addition to the antibiotic activity, these AMPs displayed lethality to houseflies and hemotoxin-like toxicity on mice by causing hemolysis, tissue damage and inducing inflammatory pain. Unlike AMPs from other origins, these venom-derived AMPs seem to be unsuitable as anti-infective drugs due to their high hemolysis and low serum stability. However, MeuTXKβ1, a known two-domain Mesobuthus AMP, is an exception since it exhibits high activity toward antibiotic resistant Staphylococci clinical isolates with low hemolysis and high serum stability. The findings that the classical AMPs play predatory and defensive roles indicate that the multifunctionality of scorpion venom components is an intrinsic feature likely evolved by natural selection from microbes, prey and predators of scorpions. This definitely provides an excellent system in which one can study how a protein adaptively evolves novel functions in a new environment. Meantimes, new strategies are needed to remove the toxicity of svAMPs on eukaryotic cells when they are used as leads for anti-infective drugs.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Proaño-Bolaños C, Zhou M, Wang L, Coloma LA, Chen T, Shaw C. Peptidomic approach identifies cruzioseptins, a new family of potent antimicrobial peptides in the splendid leaf frog, Cruziohyla calcarifer. J Proteomics 2016; 146:1-13. [PMID: 27321580 DOI: 10.1016/j.jprot.2016.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/29/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Phyllomedusine frogs are an extraordinary source of biologically active peptides. At least 8 families of antimicrobial peptides have been reported in this frog clade, the dermaseptins being the most diverse. By a peptidomic approach, integrating molecular cloning, Edman degradation sequencing and tandem mass spectrometry, a new family of antimicrobial peptides has been identified in Cruziohyla calcarifer. These 15 novel antimicrobial peptides of 20-32 residues in length are named cruzioseptins. They are characterized by having a unique shared N-terminal sequence GFLD- and the sequence motifs -VALGAVSK- or -GKAAL(N/G/S) (V/A)V- in the middle of the peptide. Cruzioseptins have a broad spectrum of antimicrobial activity and low haemolytic effect. The most potent cruzioseptin was CZS-1 that had a MIC of 3.77μM against the Gram positive bacterium, Staphylococcus aureus and the yeast Candida albicans. In contrast, CZS-1 was 3-fold less potent against the Gram negative bacterium, Escherichia coli (MIC 15.11μM). CZS-1 reached 100% haemolysis at 120.87μM. Skin secretions from unexplored species such as C. calcarifer continue to demonstrate the enormous molecular diversity hidden in the amphibian skin. Some of these novel peptides may provide lead structures for the development of a new class of antibiotics and antifungals of therapeutic use. BIOLOGICAL SIGNIFICANCE Through the combination of molecular cloning, Edman degradation sequencing, tandem mass spectrometry and MALDI-TOF MS we have identified a new family of 15 antimicrobial peptides in the skin secretion of Cruziohyla calcarifer. The novel family is named "Cruzioseptins" and contains cationic amphipathic peptides of 20-32 residues. They have a broad range of antimicrobial activity that also includes effective antifungals with low haemolytic activity. Therefore, C. calcarifer has proven to be a rich source of novel peptides, which could become leading structures for the development of novel antibiotics and antifungals of clinical application.
Collapse
Affiliation(s)
- Carolina Proaño-Bolaños
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, Northern Ireland, UK
| | - Luis A Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, Geovanni Farina 566 y Baltra, San Rafael, Quito, Ecuador; Ikiam, Universidad Regional Amazónica, Muyuna, Tena, Ecuador
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, Northern Ireland, UK
| |
Collapse
|
7
|
Pessoa WFB, Silva LCC, de Oliveira Dias L, Delabie JHC, Costa H, Romano CC. Analysis of Protein Composition and Bioactivity of Neoponera villosa Venom (Hymenoptera: Formicidae). Int J Mol Sci 2016; 17:513. [PMID: 27110765 PMCID: PMC4848969 DOI: 10.3390/ijms17040513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
Ants cause a series of accidents involving humans. Such accidents generate different reactions in the body, ranging from a mild irritation at the bite site to anaphylactic shock, and these reactions depend on the mechanism of action of the venom. The study of animal venom is a science known as venomics. Through venomics, the composition of the venom of several ant species has already been characterized and their biological activities described. Thus, the aim of this study was to evaluate the protein composition and biological activities (hemolytic and immunostimulatory) of the venom of Neoponera villosa (N. villosa), an ant widely distributed in South America. The protein composition was evaluated by proteomic techniques, such as two-dimensional electrophoresis. To assess the biological activity, hemolysis assay was carried out and cytokines were quantified after exposure of macrophages to the venom. The venom of N. villosa has a profile composed of 145 proteins, including structural and metabolic components (e.g., tubulin and ATPase), allergenic and immunomodulatory proteins (arginine kinase and heat shock proteins (HSPs)), protective proteins of venom (superoxide dismutase (SOD) and catalase) and tissue degradation proteins (hyaluronidase and phospholipase A2). The venom was able to induce hemolysis in human erythrocytes and also induced release of both pro-inflammatory cytokines, as the anti-inflammatory cytokine release by murine macrophages. These results allow better understanding of the composition and complexity of N. villosa venom in the human body, as well as the possible mechanisms of action after the bite.
Collapse
Affiliation(s)
- Wallace Felipe Blohem Pessoa
- State University of Santa Cruz (UESC)-Center of Biotechnology and Genetics (CBG), Ilhéus, Bahia 45662-900, Brazil.
| | | | - Leila de Oliveira Dias
- State University of Santa Cruz (UESC)-Center of Biotechnology and Genetics (CBG), Ilhéus, Bahia 45662-900, Brazil.
| | - Jacques Hubert Charles Delabie
- Myrmecology Laboratory of the Cocoa Research Center-CEPEC, Executive Committee of the Cocoa Crop (CEPLAC), Ilhéus, Bahia 45660-000, Brazil.
| | - Helena Costa
- State University of Santa Cruz (UESC)-Center of Biotechnology and Genetics (CBG), Ilhéus, Bahia 45662-900, Brazil.
| | - Carla Cristina Romano
- State University of Santa Cruz (UESC)-Center of Biotechnology and Genetics (CBG), Ilhéus, Bahia 45662-900, Brazil.
| |
Collapse
|
8
|
Xi X, Li B, Chen T, Kwok HF. A review on bradykinin-related peptides isolated from amphibian skin secretion. Toxins (Basel) 2015; 7:951-70. [PMID: 25793726 PMCID: PMC4379535 DOI: 10.3390/toxins7030951] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 12/18/2022] Open
Abstract
Amphibian skin secretion has great potential for drug discovery and contributes hundreds of bioactive peptides including bradykinin-related peptides (BRPs). More than 50 BRPs have been reported in the last two decades arising from the skin secretion of amphibian species. They belong to the families Ascaphidae (1 species), Bombinatoridae (3 species), Hylidae (9 speices) and Ranidae (25 species). This paper presents the diversity of structural characteristics of BRPs with N-terminal, C-terminal extension and amino acid substitution. The further comparison of cDNA-encoded prepropeptides between the different species and families demonstrated that there are various forms of kininogen precursors to release BRPs and they constitute important evidence in amphibian evolution. The pharmacological activities of isolated BRPs exhibited unclear structure–function relationships, and therefore the scope for drug discovery and development is limited. However, their diversity shows new insights into biotechnological applications and, as a result, comprehensive and systematic studies of the physiological and pharmacological activities of BRPs from amphibian skin secretion are needed in the future.
Collapse
Affiliation(s)
- Xinping Xi
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
- Natural Drug Discovery Group, School of Pharmacy, Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
9
|
Xu X, Lai R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 2015; 115:1760-846. [PMID: 25594509 DOI: 10.1021/cr4006704] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xueqing Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China
| | | |
Collapse
|
10
|
Wang R, Zhou Y, Chen T, Zhou M, Wang L, Shaw C. Identification and functional analysis of a novel tryptophyllin peptide from the skin of the red-eye leaf frog, Agalychnis callidryas. Int J Biol Sci 2015; 11:209-19. [PMID: 25561903 PMCID: PMC4279096 DOI: 10.7150/ijbs.10143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/24/2014] [Indexed: 11/05/2022] Open
Abstract
Amphibian skin has proved repeatedly to be a largely untapped source of bioactive peptides and this is especially true of members of the Phyllomedusinae subfamily of frogs native to South and Central America. Tryptophyllins are a group of peptides mainly found in the skin of members of this genus. In this study, a novel tryptophyllin (TPH) type 3 peptide, named AcT-3, has been isolated and structurally-characterised from the skin secretion and lyophilised skin extract of the red-eye leaf frog, Agalychnis callidryas. The peptide was identified in and purified from the skin secretion by reverse-phase HPLC. MALDI-TOF mass spectrometry and MS/MS fragmentation sequencing established its primary structure as: pGlu-Gly-Lys-Pro-Tyr-Trp-Pro-Pro-Pro-Phe-Leu-Pro-Glu, with a non-protonated molecular mass of 1538.19Da. The mature peptide possessed the canonical N-terminal pGlu residue that arises from post-translational modification of a Gln residue. The deduced open-reading frame consisted of 63 amino acid residues encoding a highly-conserved signal peptide of approximately 22 amino acid residues, an intervening acidic spacer peptide domain, a single AcT-3 encoding domain and a C terminal processing site. A synthetic replicate of AcT-3 was found to antagonise the effect of BK on rat tail artery smooth muscle and to contract the intestinal smooth muscle preparations. It was also found that AcT-3 could dose-dependently inhibit the proliferation of human prostate cancer cell lines after 72h incubation.
Collapse
Affiliation(s)
- Ran Wang
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy. Tianjin Medical University, Tianjin 300070, China ; 2. School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Yu Zhou
- 2. School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT9 7BL, Northern Ireland, UK ; 3. School of Biomedical Science and Institute of Molecular Medicine, Huaqiao University, Xiamen 361021, Fujian, China
| | - Tianbao Chen
- 2. School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- 2. School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- 2. School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- 2. School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
11
|
König E, Bininda-Emonds ORP, Shaw C. The diversity and evolution of anuran skin peptides. Peptides 2015; 63:96-117. [PMID: 25464160 DOI: 10.1016/j.peptides.2014.11.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023]
Abstract
Amphibians exhibit various, characteristic adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. In particular, the integument was subject to a number of specialized modifications during the evolution of these animals. In this review, we place special emphasis on endogenous host-defence skin peptides from the cuteanous granular glands anuran amphibians (frogs and toads). The overview on the two broad groups of neuroactive and antimicrobial peptides (AMPs) goes beyond a simple itemization in that we provide a new perspective into the evolution and function of anuran AMPs. Briefly, these cationic, amphipathic and α-helical peptides are traditionally viewed as being part of the innate immune system, protecting the moist skin against invading microorganisms through their cytolytic action. However, the complete record of anuran species investigated to date suggests that AMPs are distributed sporadically (i.e., non-universally) across Anura. Together with the intriguing observation that virtually all anurans known to produce neuropeptides in their granular glands also co-secrete cytolytic peptides, we call the traditional role for AMPs as being purely antimicrobial into question and present an alternative scenario. We hypothesize AMPs to assist neuroactive peptides in their antipredator role through their cytolytic action increasing the delivery of the latter to the endocrine and nervous system of the predator. Thus, AMPs are more accurately viewed as cytolysins and their contribution to the immune system is better regarded as an accessory benefit.
Collapse
Affiliation(s)
- Enrico König
- AG Systematik und Evolutionsbiologie, IBU - Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany.
| | - Olaf R P Bininda-Emonds
- AG Systematik und Evolutionsbiologie, IBU - Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany
| | - Chris Shaw
- School of Pharmacy, Medical Biology Center, Queen's University, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
12
|
Wang R, Lin Y, Chen T, zhou M, Wang L, Shaw C. Molecular Cloning of a Novel Tryptophyllin Peptide from the Skin of the Orange-Legged Monkey Frog,Phyllomedusa hypochondrialis. Chem Biol Drug Des 2014; 83:731-40. [DOI: 10.1111/cbdd.12287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
- School of Pharmacy; Medical Biology Centre; Queen's University; Belfast BT9 7BL UK
| | - Yangjun Lin
- School of Pharmacy; Medical Biology Centre; Queen's University; Belfast BT9 7BL UK
- Department of Pharmacy; Quanzhou Medical College; Quanzhou Fujian 362000 China
| | - Tianbao Chen
- School of Pharmacy; Medical Biology Centre; Queen's University; Belfast BT9 7BL UK
| | - Mei zhou
- School of Pharmacy; Medical Biology Centre; Queen's University; Belfast BT9 7BL UK
| | - Lei Wang
- School of Pharmacy; Medical Biology Centre; Queen's University; Belfast BT9 7BL UK
| | - Chris Shaw
- School of Pharmacy; Medical Biology Centre; Queen's University; Belfast BT9 7BL UK
| |
Collapse
|
13
|
The skin secretion of the amphibian Phyllomedusa nordestina: a source of antimicrobial and antiprotozoal peptides. Molecules 2013; 18:7058-70. [PMID: 23774944 PMCID: PMC6270157 DOI: 10.3390/molecules18067058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) from the dermaseptin and phylloseptin families were isolated from the skin secretion of Phyllomedusa nordestina, a recently described amphibian species from Northeastern Brazil. One dermaseptin and three phylloseptins were chosen for solid phase peptide synthesis. The antiprotozoal and antimicrobial activities of the synthetic peptides were determined, as well as their cytotoxicity in mouse peritoneal cells. AMPs are being considered as frameworks for the development of novel drugs inspired by their mechanism of action.
Collapse
|
14
|
König E, Clark VC, Shaw C, Bininda-Emonds ORP. Molecular cloning of skin peptide precursor-encoding cDNAs from tibial gland secretion of the Giant Monkey Frog, Phyllomedusa bicolor (Hylidae, Anura). Peptides 2012; 38:371-6. [PMID: 23000306 DOI: 10.1016/j.peptides.2012.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 11/16/2022]
Abstract
The skins of phyllomedusine frogs have long been considered as being tremendously rich sources of bioactive peptides. Previous studies of both peptides and cloning of their precursor encoding cDNAs have relied upon methanolic skin extracts or the dissected skins of recently deceased specimens and have not considered the different glands in isolation. We therefore focused our attention on the tibial gland of the Giant Monkey Frog, Phyllomedusa bicolor and constructed a cDNA library from the skin secretion that was obtained via mechanical stimulation of this macrogland. Using shotgun cloning, four precursors encoding host-defense peptides were identified: two archetypal dermaseptins, a phyllokinin and a phylloseptin that is new for this species but has been recently described from the Waxy Monkey Leaf Frog, Phyllomedusa sauvagii. Our study is the first to report defensive peptides specifically isolated from anuran tibial glands, confirming the hypothesis that these glands also contribute to chemical defense. Moreover, the discovery of novel compounds for this otherwise very well characterized species suggests that this largely neglected gland might possess a different cocktail of secretions from glands elsewhere in the same animal. We will also discuss some evolutionary implications of our findings with respect to the adaptive plasticity of secretory glands.
Collapse
Affiliation(s)
- Enrico König
- AG Systematik und Evolutionsbiologie, IBU - Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany.
| | | | | | | |
Collapse
|