1
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
2
|
Sudakov NP, Chang HM, Renn TY, Klimenkov IV. Degenerative and Regenerative Actin Cytoskeleton Rearrangements, Cell Death, and Paradoxical Proliferation in the Gills of Pearl Gourami ( Trichogaster leerii) Exposed to Suspended Soot Microparticles. Int J Mol Sci 2023; 24:15146. [PMID: 37894826 PMCID: PMC10607021 DOI: 10.3390/ijms242015146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The effect is studied of water-suspended soot microparticles on the actin cytoskeleton, apoptosis, and proliferation in the gill epithelium of pearl gourami. To this end, the fish are kept in aquariums with 0.005 g/L of soot for 5 and 14 days. Laser confocal microscopy is used to find that at the analyzed times of exposure to the pollutant zones appear in the gill epithelium, where the actin framework of adhesion belts dissociates and F-actin either forms clumps or concentrates perinuclearly. It is shown that the exposure to soot microparticles enhances apoptosis. On day 5, suppression of the proliferation of cells occurs, but the proliferation increases to the control values on day 14. Such a paradoxical increase in proliferation may be a compensatory process, maintaining the necessary level of gill function under the exposure to toxic soot. This process may occur until the gills' recovery reserve is exhausted. In general, soot microparticles cause profound changes in the actin cytoskeleton in gill cells, greatly enhance cell death, and influence cell proliferation as described. Together, these processes may cause gill dysfunction and affect the viability of fish.
Collapse
Affiliation(s)
- Nikolay P. Sudakov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Ting-Yi Renn
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Igor V. Klimenkov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| |
Collapse
|
3
|
López-Ortega A, Sáenz de Viteri V, Alves SA, Mendoza G, Fuentes E, Mitran V, Cimpean A, Dan I, Vela A, Bayón R. Multifunctional TiO 2 coatings developed by plasma electrolytic oxidation technique on a Ti20Nb20Zr4Ta alloy for dental applications. BIOMATERIALS ADVANCES 2022; 138:212875. [PMID: 35913254 DOI: 10.1016/j.bioadv.2022.212875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
A newly developed β-Ti alloy based on the Ti-Nb-Zr-Ta system (Ti20Nb20Zr4Ta) has been subjected to Plasma Electrolytic Oxidation (PEO) treatment to obtain a multifunctional ceramic-like (TiO2) coating with superior tribocorrosion (wear and corrosion) resistance and improved biocompatibility. For this aim, elements such as Ca, P, and Ag NPs have been incorporated into the oxide film to obtain bioactive and biocide properties. The chemical composition and morphology of the TiO2-PEO coating was characterized, and its multifunctionality was addressed by several means, including antibacterial activity assessment, formation of bone-like apatite, metallic ion release evaluation, in vitro cellular response analysis, and corrosion and tribocorrosion tests in artificial saliva. The developed coatings enhanced the corrosion and tribocorrosion resistance of the bare alloy and exhibited antibacterial ability with low cytotoxicity and negligible ion release. Furthermore, they were able to sustain MC3T3-E1 preosteoblast viability/proliferation and osteogenic differentiation. Altogether, the results obtained demonstrate the potential of the TiO2 coating incorporating Ca, P, and Ag NPs to be used for dental applications.
Collapse
Affiliation(s)
- A López-Ortega
- Tekniker, Basque Research and Technology Aliance (BRTA), Eibar, Spain.
| | | | - S A Alves
- Tekniker, Basque Research and Technology Aliance (BRTA), Eibar, Spain
| | - G Mendoza
- Tekniker, Basque Research and Technology Aliance (BRTA), Eibar, Spain
| | - E Fuentes
- Tekniker, Basque Research and Technology Aliance (BRTA), Eibar, Spain
| | - V Mitran
- University of Bucharest, Department of Biochemistry and Molecular Biology, Bucharest, Romania
| | - A Cimpean
- University of Bucharest, Department of Biochemistry and Molecular Biology, Bucharest, Romania
| | - I Dan
- R&D Consulting and Services SRL, Bucharest, Romania
| | - A Vela
- Mugape S.L., Mallabia, Spain
| | - R Bayón
- Tekniker, Basque Research and Technology Aliance (BRTA), Eibar, Spain
| |
Collapse
|
4
|
Cheng D, Deng B, Tong Q, Gao S, Xiao B, Zhu M, Ren Z, Wang L, Sun M. Proteomic Studies of the Mechanism of Cytotoxicity, Induced by Palytoxin on HaCaT Cells. Toxins (Basel) 2022; 14:toxins14040269. [PMID: 35448878 PMCID: PMC9031313 DOI: 10.3390/toxins14040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Palytoxin (PLTX) is a polyether marine toxin isolated from sea anemones. It is one of the most toxic nonprotein substances, causing many people to be poisoned every year and to die in severe cases. Despite its known impact on Na+,K+-ATPase, much still remains unclear about PLTX’s mechanism of action. Here, we tested different concentrations of PLTX on HaCaT cells and studied its distributions in cells, its impact on gene expression, and the associated pathways via proteomics combined with bioinformatics tools. We found that PLTX could cause ferroptosis in HaCaT cells, a new type of programmed cell death, by up-regulating the expression of VDAC3, ACSL4 and NCOA4, which lead to the occurrence of ferroptosis. PLTX also acts on the MAPK pathway, which is related to cell apoptosis, proliferation, division and differentiation. Different from its effect on ferroptosis, PLTX down-regulates the expression of ERK, and, as a result, the expressions of MAPK1, MAP2K1 and MAP2K2 are also lower, affecting cell proliferation. The genes from these two mechanisms showed interactions, but we did not find overlap genes between the two. Both ferroptosis and MAPK pathways can be used as anticancer targets, so PLTX may become an anticancer drug with appropriate modification.
Collapse
|
5
|
Redox-responsive hyaluronic acid-based nanoparticles for targeted photodynamic therapy/chemotherapy against breast cancer. J Colloid Interface Sci 2021; 598:213-228. [PMID: 33901847 DOI: 10.1016/j.jcis.2021.04.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Specific cellular uptake and sufficient drug release in tumor tissues are important for effective cancer therapy. Hyaluronic acid (HA), a skeleton material, could specifically bind to cluster determinant 44 (CD44) receptors highly expressed on the surface of tumor cells to realize active targeting. Cystamine (cys) is sensitive highly reductive environment inside tumor cells and was used as a connecting arm to connect docosahexaenoic acid (DHA) and chlorin e6 (Ce6) to the HA skeleton to obtain redox-sensitive polymer HA-cys-DHA/Ce6 (CHD). Nanoparticles were fabricated and loaded with chemotherapeutic drug docetaxel (DTX) by physical encapsulation. The prepared nanoparticles had significantly increased uptake by MCF-7 cells that overexpressed CD44 receptors, and DTX was effectively released at high reducing condition. Compared with mono-photodynamic therapy (PDT) or mono-chemotherapy, the prepared nanoparticles exhibited superior anti-tumor effect by inhibiting microtubule depolymerization, blocking cell cycle and generating reactive oxygen species (ROS). In vivo anti-tumor experiments proved that DTX/CHD nanoparticles had the best antitumor response versus DTX and CHD nanoparticles under near-infrared (NIR) irradiation. These studies revealed that redox-responsive DTX-loaded CHD nanoparticles held great potential for the treatment of breast cancer.
Collapse
|
6
|
Barrett RT, Hastings JP, Ronquillo YC, Hoopes PC, Moshirfar M. Coral Keratitis: Case Report and Review of Mechanisms of Action, Clinical Management and Prognosis of Ocular Exposure to Palytoxin. Clin Ophthalmol 2021; 15:141-156. [PMID: 33469260 PMCID: PMC7811479 DOI: 10.2147/opth.s290455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 01/22/2023] Open
Abstract
Palytoxin is one of the most lethal natural toxins ever discovered. This molecule has been isolated from various marine animals, including zoanthid corals. This popular organism is commonly found in many home saltwater aquariums due to its beauty and survivability. As a result of an increase in popularity, an increased number of individuals are at risk for exposure to this potentially deadly toxin. Affected patients may experience various symptoms based on the route of exposure (ie, cutaneous contact, inhalation of aerosolized toxin, ocular exposure, or ingestion). Ocular exposure can occur in various ways (eg, contact with contaminated water, rubbing the eye with a dirtied hand, or direct spraying into the eye), and incidence rates have dramatically risen in recent years. In this review, we discuss a case of systemic toxicity from inhalation and ocular exposure to presumed palytoxin on a zoanthid coral which resulted in an intensive care unit (ICU) stay, and corneal perforation which required a corneal transplant. Additionally, we review what is known about the mechanism of action of this toxin, propose a comprehensive hypothesis of its effects on corneal cells, and discuss the prognosis and clinical management of patients with systemic symptoms secondary to other routes of exposure.
Collapse
Affiliation(s)
| | - Jordan P Hastings
- California Northstate University College of Medicine, Elk Grove, CA, USA
| | | | | | - Majid Moshirfar
- Hoopes Vision Research Center, Draper, UT, USA.,John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA.,Utah Lions Eye Bank, Murray, UT, USA
| |
Collapse
|
7
|
Sitprija V, Sitprija S. Marine toxins and nephrotoxicity:Mechanism of injury. Toxicon 2019; 161:44-49. [PMID: 30826470 DOI: 10.1016/j.toxicon.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 02/06/2023]
Abstract
Marine toxins are known among several causes of toxin induced renal injury. Enzymatic mechanism by phospholipase A2 is responsible for acute kidney injury (AKI) in sea snake envenoming without any change in cardiac output and systemic vascular resistance. Cnidarian toxins form pores in the cell membrane with Ca influx storm resulting in cell death. Among plankton toxins domoic acid, palytoxin and maitotoxin cause renal injury by ion transport into the cell through ion channels resulting in renal cell swelling and lysis. Okadaic acid, calyculin A, microcystin LR and nodularin cause AKI by serine threonine phosphatase inhibition and hyperphosphorylation with increased activity of Ca2+/calmodulin - dependent protein kinase II, increased cytosolic Ca2+, reactive oxygen species, caspase and P53. Renal injury by plankons is mostly subclinical and requires sensitive biomarker for diagnosis. In this respect repeated consumption of plankton toxin contaminated seafood is a risk of developing chronic renal disease. The subject deserves more clinical study and scientific attention.
Collapse
Affiliation(s)
- Visith Sitprija
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Rama 4 Road, Bangkok, 10330, Thailand.
| | - Siravit Sitprija
- Department of Biology, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
8
|
Xie H, Wang P, Wu J. Effect of exposure of osteoblast-like cells to low-dose silver nanoparticles: uptake, retention and osteogenic activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:260-267. [PMID: 30663398 DOI: 10.1080/21691401.2018.1552594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hongjun Xie
- Stomatology Department, Linyi People’s Hospital, Linyi, China
| | - Pei Wang
- Stomatology Department, Tianjin Fourth Central Hospital, Tianjin, China
| | - Jie Wu
- Stomatology Department, Shandong Medical College, Linyi, China
| |
Collapse
|
9
|
Tang Y, Liang J, Wu A, Chen Y, Zhao P, Lin T, Zhang M, Xu Q, Wang J, Huang Y. Co-Delivery of Trichosanthin and Albendazole by Nano-Self-Assembly for Overcoming Tumor Multidrug-Resistance and Metastasis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26648-26664. [PMID: 28741923 DOI: 10.1021/acsami.7b05292] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multidrug resistance (MDR) and metastasis are the major obstacles in cancer chemotherapy. Nanotechnology-based combination therapy is a useful strategy. Recently, the combination of biologics and small drugs has attracted much attention in cancer therapy. Yet, the treatment outcomes are often compromised by the different pharmacokinetic profiles of the co-administered drugs thus leading to inconsistent drug uptake and suboptimal drug combination at the tumor sites. Nanotechnology-based co-delivery offers a promising method to address this problem, which is well demonstrated in the use of small drug combinations. However, co-delivery of the drugs bearing different physicochemical properties (e.g., proteins and small drugs) remains a formidable challenge. Herein, we developed a self-assembled nanosystem for co-delivery of trichosanthin (TCS) protein and albendazole (ABZ) as a combination therapy for overcoming MDR and metastasis. TCS is a ribosome-inactivating protein with high antitumor activity. However, the druggability of TCS is poor due to its short half-life, lack of tumor-specific action, and low cell uptake. ABZ is a clinically used antihelmintic drug, which can also inhibit tubulin polymerization and thus serve as a potential antitumor drug. In our work, ABZ was encapsulated in the albumin-coated silver nanoparticles (termed ABZ@BSA/Ag NP). The thus-formed NPs were negatively charged and could tightly bind with the cationic TCS that was modified with a cell-penetrating peptide (CPP) low-molecular-weight protamine (termed rTL). Via the stable charge interaction, the nanosystem (rTL/ABZ@BSA/Ag NP) was self-assembled, and featured by the TCS corona. The co-delivery system efficiently inhibited the proliferation of the drug-resistant tumor cells (A549/T and HCT8/ADR) by impairing the cytoskeleton, arresting the cell cycle, and enhancing apoptosis. In addition, the migration and invasion of tumor cells were inhibited presumably due to the impeded cytoskeleton functions. The anti-MDR effect was further confirmed by the in vivo studies with the subcutaneous A549/T tumor mouse model. More importantly, the co-delivery system was demonstrated to be able to inhibit metastasis. The co-delivery system of TCS/ABZ provided a potential strategy for both overcoming drug resistance and inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yisi Tang
- Guangzhou University of Chinese Medicine , 12 Ji-chang Road, Guangzhou 510450, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Jianming Liang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Aihua Wu
- Guangzhou University of Chinese Medicine , 12 Ji-chang Road, Guangzhou 510450, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Yingzhi Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Pengfei Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Tingting Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Department of Pharmacy, Binzhou Medical University Hospital , Binzhou 256603, China
| | - Meng Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Qin Xu
- Guangzhou University of Chinese Medicine , 12 Ji-chang Road, Guangzhou 510450, China
| | - Jianxin Wang
- Guangzhou University of Chinese Medicine , 12 Ji-chang Road, Guangzhou 510450, China
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
10
|
Abe T, Naito T, Uemura D. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) Analysis of Palytoxin. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many natural products have been isolated from various marine organisms. These natural products, especially huge polyol and polyether compounds, are expected to be promising drug-leads. On the other hand, the accumulation of these compounds in fish and shellfish can cause food poisoning in humans. Therefore, the development of effective methods for the detection of these compounds is important from both academic and public health perspectives. We subjected palytoxin to an SDS-PAGE analysis, which is very easy, quick, and inexpensive, to determine whether this approach could be effective for detecting huge polyol natural products. Eventually, we were able to detect a band of palytoxin by SDS-PAGE analysis, which demonstrated that SDS-PAGE could be useful for detecting polyol and polyether compounds.
Collapse
Affiliation(s)
- Takahiro Abe
- Research Institute of Natural Drug-Leads, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan
| | - Takayuki Naito
- Research Institute of Natural Drug-Leads, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan
| | - Daisuke Uemura
- Research Institute of Natural Drug-Leads, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan
| |
Collapse
|
11
|
Jouiaei M, Yanagihara AA, Madio B, Nevalainen TJ, Alewood PF, Fry BG. Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins (Basel) 2015; 7:2251-71. [PMID: 26094698 PMCID: PMC4488701 DOI: 10.3390/toxins7062251] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023] Open
Abstract
Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or "venom" that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design.
Collapse
Affiliation(s)
- Mahdokht Jouiaei
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia 4072, QLD, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Angel A Yanagihara
- Pacific Cnidaria Research Lab, Department of Tropical Medicine, University of Hawaii, Honolulu, HI 96822, USA.
| | - Bruno Madio
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Timo J Nevalainen
- Department of Pathology, University of Turku, Turku FIN-20520, Finland.
| | - Paul F Alewood
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia 4072, QLD, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| |
Collapse
|
12
|
Pelin M, Sosa S, Pacor S, Tubaro A, Florio C. The marine toxin palytoxin induces necrotic death in HaCaT cells through a rapid mitochondrial damage. Toxicol Lett 2014; 229:440-50. [PMID: 25066017 DOI: 10.1016/j.toxlet.2014.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/17/2022]
Abstract
Palytoxin (PLTX) is one of the most toxic algal biotoxin known so far. It transforms the Na(+)/K(+)-ATPase into a cationic channel inducing a massive intracellular Na(+) influx. However, from a mechanistic point of view, the features and the intracellular pathways leading to PLTX-induced cell death are still not completely characterized. This study on skin HaCaT keratinocytes demonstrates that PLTX induces necrosis since propidium iodide uptake was observed already after 1 h toxin exposure, an effect that was not lowered by toxin removal. Furthermore, necrotic-like morphological alterations were evidenced by confocal microscopy. Apoptosis occurrence was excluded since no caspases 3/7, caspase 8, and caspase 9 activation as well as no apoptotic bodies formation were recorded. Necrosis was preceded by a very early mitochondrial damage as indicated by JC-1 fluorescence shift, recorded already after 5 min toxin exposure. This shift was totally abolished when Na(+) and Ca(2+) ions were withdrawn from culture medium, whereas cyclosporine-A was ineffective, excluding the occurrence of a controlled biochemical response. These results clearly establish necrosis as the primary mechanism for PLTX-induced cell death in HaCaT cells. The rapidity of mitochondrial damage and the consequent irreversible necrosis rise serious concerns about the very fast onset of PLTX toxic effects.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Science, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| | - Silvio Sosa
- Department of Life Science, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| | - Sabrina Pacor
- Department of Life Science, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| | - Aurelia Tubaro
- Department of Life Science, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| | - Chiara Florio
- Department of Life Science, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| |
Collapse
|
13
|
Synergistic enhancement of cancer therapy using a combination of ceramide and docetaxel. Int J Mol Sci 2014; 15:4201-20. [PMID: 24619193 PMCID: PMC3975392 DOI: 10.3390/ijms15034201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
Ceramide (CE)-based combination therapy (CE combination) as a novel therapeutic strategy has attracted great attention in the field of anti-cancer therapy. The principal purposes of this study were to investigate the synergistic effect of CE in combination with docetaxel (DTX) (CE + DTX) and to explore the synergy mechanisms of CE + DTX. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and combination index (CI) assay showed that simultaneous administration of CE and DTX with a molar ratio of 0.5:1 could generate the optimal synergistic effect on murine malignant melanoma cell (B16, CI = 0.31) and human breast carcinoma cell (MCF-7, CI = 0.48). The apoptosis, cell cycle, and cytoskeleton destruction study demonstrated that CE could target and destruct the microfilament actin, subsequently activate Caspase-3 and induce apoptosis. Meanwhile, DTX could target and disrupt the microtubules cytoskeleton, leading to a high proportion of cancer cells in G2/M-phase arrest. Moreover, CE plus DTX could cause a synergistic destruction of cytoskeleton, which resulted in a significantly higher apoptosis and a significantly higher arrest in G2/M arrest comparing with either agent alone (p < 0.01). The in vivo antitumor study evaluated in B16 tumor-bearing mice also validated the synergistic effects. All these results suggested that CE could enhance the antitumor activity of DTX in a synergistic manner, which suggest promising application prospects of CE + DTX combination treatment.
Collapse
|
14
|
In vivo and in vitro effects of 42-hydroxy-palytoxin on mouse skeletal muscle: structural and functional impairment. Toxicol Lett 2013; 225:285-93. [PMID: 24378260 DOI: 10.1016/j.toxlet.2013.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022]
Abstract
Palytoxins (PLTXs) are known seafood contaminants and their entrance into the food chain raises concern about possible effects on human health. The increasing number of analogs being identified in edible marine organisms complicates the estimation of the real hazard associated with the presence of PLTX-like compounds. So far, 42-OH-PLTX is one of the few congeners available, and the study of its toxicity represents an important step toward a better comprehension of the mechanism of action of this family of compounds. From this perspective, the aim of this work was to investigate the in vivo and in vitro effect of 42-OH-PLTX on skeletal muscle, one of the most sensitive targets for PLTXs. Our results demonstrate that 42-OH-PLTX causes damage at the skeletal muscle level with a cytotoxic potency similar to that of PLTX. 42-OH-PLTX induces cytotoxicity and cell swelling in a Na(+)-dependent manner similar to the parent compound. However, the limited Ca(2+)-dependence of the toxic insult induced by 42-OH-PLTX suggests a specific mechanism of action for this analog. Our results also suggest an impaired response to the physiological agonist acetylcholine and altered cell elasticity.
Collapse
|
15
|
Fernández DA, Louzao MC, Vilariño N, Espiña B, Fraga M, Vieytes MR, Román A, Poli M, Botana LM. The kinetic, mechanistic and cytomorphological effects of palytoxin in human intestinal cells (Caco-2) explain its lower-than-parenteral oral toxicity. FEBS J 2013; 280:3906-19. [DOI: 10.1111/febs.12390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Diego A. Fernández
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - M. Carmen Louzao
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Natalia Vilariño
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Begoña Espiña
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
- International Iberian Nanotechnology Laboratory (INL); Braga Portugal
| | - María Fraga
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Mercedes R. Vieytes
- Departamento de Fisiología Animal; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Albina Román
- Unidad de Microscopía Electrónica y Confocal; Edificio CACTUS; Lugo Spain
| | - Mark Poli
- Integrated Toxicology Division; US Army Medical Research Institute of Infectious Diseases; Fort Detrick MD USA
| | - Luis M. Botana
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| |
Collapse
|
16
|
Li Y, Liu N, Huang D, Zhang Z, Peng Z, Duan C, Tang X, Tan G, Yan G, Mei W, Tang F. Proteomic analysis on N, N'-dinitrosopiperazine-mediated metastasis of nasopharyngeal carcinoma 6-10B cells. BMC BIOCHEMISTRY 2012; 13:25. [PMID: 23157228 PMCID: PMC3570300 DOI: 10.1186/1471-2091-13-25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/16/2012] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) has a high metastatic feature. N,N'-Dinitrosopiperazine (DNP) is involved in NPC metastasis, but its mechanism is not clear. The aim of this study is to reveal the pathogenesis of DNP-involved metastasis. 6-10B cells with low metastasis are from NPC cell line SUNE-1, were used to investigate the mechanism of DNP-mediated NPC metastasis. RESULTS 6-10B cells were grown in DMEM containing 2H4-L-lysine and 13C 6 15 N4-L-arginine or conventional L-lysine and L-arginine, and identified the incorporation of amino acid by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Labeled 6-10B cells were treated with DNP at 0 -18 μM to establish the non-cytotoxic concentration (NCC) range. NCC was 0 -10 μM. Following treatment with DNP at this range, the motility and invasion of cells were detected in vitro, and DNP-mediated metastasis was confirmed in the nude mice. DNP increased 6-10B cell metastasis in vitro and vivo. DNP-induced protein expression was investigated using a quantitative proteomic. The SILAC-based approach quantified 2698 proteins, 371 of which showed significant change after DNP treatment (172 up-regulated and 199 down-regulated proteins). DNP induced the change in abundance of mitochondrial proteins, mediated the status of oxidative stress and the imbalance of redox state, increased cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression. DNP also increased the expression of secretory AKR1B10, cathepsin B and clusterin 6-10B cells. Gene Ontology and Ingenuity Pathway analysis showed that DNP may regulate protein synthesis, cellular movement, lipid metabolism, molecular transport, cellular growth and proliferation signaling pathways. CONCLUSION DNP may regulate cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression, increase NPC cells motility and invasion, is involved NPC metastasis.
Collapse
Affiliation(s)
- Yuejin Li
- Zhuhai Hospital, Jinan University, Zhuhai, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Del Favero G, Florio C, Codan B, Sosa S, Poli M, Sbaizero O, Molgó J, Tubaro A, Lorenzon P. The Stretch-Activated Channel Blocker Gd3+ Reduces Palytoxin Toxicity in Primary Cultures of Skeletal Muscle Cells. Chem Res Toxicol 2012; 25:1912-20. [DOI: 10.1021/tx300203x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Mark Poli
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21701-5011, United States
| | | | - Jordi Molgó
- Institut Fédératif de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie
et Développement, CNRS UPR 3294, 91198 Gif sur Yvette cedex,
France
| | | | | |
Collapse
|
18
|
Alfonso A, Fernández-Araujo A, Alfonso C, Caramés B, Tobio A, Louzao M, Vieytes M, Botana L. Palytoxin detection and quantification using the fluorescence polarization technique. Anal Biochem 2012; 424:64-70. [DOI: 10.1016/j.ab.2012.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/19/2012] [Accepted: 02/09/2012] [Indexed: 11/16/2022]
|
19
|
Paredes I, Rietjens I, Vieites J, Cabado A. Update of risk assessments of main marine biotoxins in the European Union. Toxicon 2011; 58:336-54. [DOI: 10.1016/j.toxicon.2011.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/06/2011] [Accepted: 07/04/2011] [Indexed: 01/16/2023]
|
20
|
Prandi S, Sala GL, Bellocci M, Alessandrini A, Facci P, Bigiani A, Rossini GP. Palytoxin induces cell lysis by priming a two-step process in mcf-7 cells. Chem Res Toxicol 2011; 24:1283-96. [PMID: 21728342 DOI: 10.1021/tx2001866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cytolytic action of palytoxin (PlTX) was recognized long ago, but its features have remained largely undetermined. We used biochemical, morphological, physiological, and physical tools, to study the cytolytic response in MCF-7 cells, as our model system. Cytolysis represented a stereotyped response induced by the addition of isotonic phosphate buffer (PBS) to cells that had been exposed to PlTX, after toxin removal and under optimal and suboptimal experimental conditions. Cytolysis was sensitive to osmolytes present during cell exposure to PlTX but not in the course of the lytic phase. Fluorescence microscopy showed that PlTX caused cell rounding and rearrangement of the actin cytoskeleton. Atomic force microscopy (AFM) was used to monitor PlTX effects in real time, and we found that morphological and mechanical properties of MCF-7 cells did not change during toxin exposure, but increased cell height and decreased stiffness at its surface were observed when PBS was added to PlTX-treated cells. The presence of an osmolyte during PlTX treatment prevented the detection of changes in morphological and mechanical properties caused by PBS addition to toxin-treated cells, as detected by AFM. By patch-clamp technique, we confirmed that PlTX action involved the transformation of the Na(+),K(+)-ATPase into a channel and found that cell membrane capacitance was not changed by PlTX, indicating that the membrane surface area was not greatly affected in our model system. Overall, our findings show that the cytolytic response triggered by PlTX in MCF-7 cells includes a first phase, which is toxin-dependent and osmolyte-sensitive, priming cells to lytic events taking place in a separate phase, which does not require the presence of the toxin and is osmolyte-insensitive but is accompanied by marked reorganization of actin-based cytoskeleton and altered mechanical properties at the cell's surface. A model of the two-step process of PlTX-induced cytolysis is presented.
Collapse
Affiliation(s)
- Simone Prandi
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia , Via Campi 287, I-41125 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
The cytolytic and cytotoxic activities of palytoxin. Toxicon 2011; 57:449-59. [DOI: 10.1016/j.toxicon.2010.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 11/18/2022]
|
22
|
|