1
|
Avella I, Schulte L, Hurka S, Damm M, Eichberg J, Schiffmann S, Henke M, Timm T, Lochnit G, Hardes K, Vilcinskas A, Lüddecke T. Proteogenomics-guided functional venomics resolves the toxin arsenal and activity of Deinagkistrodon acutus venom. Int J Biol Macromol 2024; 278:135041. [PMID: 39182889 DOI: 10.1016/j.ijbiomac.2024.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Snakebite primarily impacts rural communities of Africa, Asia, and Latin America. The sharp-nosed viper (Deinagkistrodon acutus) is among the snakes of highest medical importance in Asia. Despite various studies on its venom using modern venomics techniques, a comprehensive understanding of composition and function of this species' venom remains lacking. We combined proteogenomics with extensive bioactivity profiling to present the first genome-level catalogue of D. acutus venom proteins and their exochemistry. Our analysis identified an unusually simple venom containing 45 components from 20 distinct protein families. Relative toxin abundances indicate that C-type lectin and C-type lectin-related protein (CTL), snake venom metalloproteinase (svMP), snake venom serine protease (svSP), and phospholipase A2 (PLA2) constitute 90 % of the venom. Bioassays targeting key aspects of viperid envenomation showed considerable concentration-dependent cytotoxicity, particularly in kidney and lung cells, and potent protease and PLA2 activity. Factor Xa and thrombin activities were minor, and no plasmin activity was observed. Effects on haemolysis, intracellular calcium (Ca2+) release, and nitric oxide (NO) synthesis were negligible. Our analysis provides the first holistic genome-based overview of the toxin arsenal of D. acutus, predicting the molecular and functional basis of its life-threatening effects, and opens novel avenues for treating envenomation by this highly dangerous snake.
Collapse
Affiliation(s)
- Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Lennart Schulte
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sabine Hurka
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Johanna Eichberg
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Susanne Schiffmann
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Marina Henke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Günther Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
2
|
Zhao HY, He N, Sun Y, Wang YC, Zhang HB, Chen HH, Zhang YQ, Gao JF. Phylogeny-Related Variations in Venomics: A Test in a Subset of Habu Snakes ( Protobothrops). Toxins (Basel) 2023; 15:toxins15050350. [PMID: 37235384 DOI: 10.3390/toxins15050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
We conducted a comparative analysis to unveil the divergence among venoms from a subset of Old World habu snakes (Protobothrops) in terms of venomic profiles and toxicological and enzymatic activities. A total of 14 protein families were identified in the venoms from these habu snakes, and 11 of them were shared among these venoms. The venoms of five adult habu snakes were overwhelmingly dominated by SVMP (32.56 ± 13.94%), PLA2 (22.93 ± 9.26%), and SVSP (16.27 ± 4.79%), with a total abundance of over 65%, while the subadult P. mangshanensis had an extremely low abundance of PLA2 (1.23%) but a high abundance of CTL (51.47%), followed by SVMP (22.06%) and SVSP (10.90%). Apparent interspecific variations in lethality and enzymatic activities were also explored in habu snake venoms, but no variations in myotoxicity were found. Except for SVSP, the resemblance of the relatives within Protobothrops in other venom traits was estimated to deviate from Brownian motion evolution based on phylogenetic signals. A comparative analysis further validated that the degree of covariation between phylogeny and venom variation is evolutionarily labile and varies among clades of closely related snakes. Our findings indicate a high level of interspecific variation in the venom proteomes of habu snakes, both in the presence or absence and the relative abundance of venom protein families, and that these venoms might have evolved under a combination of adaptive and neutral mechanisms.
Collapse
Affiliation(s)
- Hong-Yan Zhao
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Na He
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan Sun
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yong-Chen Wang
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao-Bing Zhang
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui-Hui Chen
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Qi Zhang
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian-Fang Gao
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Xiao G, Liu J, Peng L, Yang Y, Sun Z. Compositional and toxicological investigation of pooled venom from farm-raised Naja atra. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210040. [PMID: 35382111 PMCID: PMC8956250 DOI: 10.1590/1678-9199-jvatitd-2021-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Naja atra is a venomous snake species medically relevant in
China. In the current study, we evaluated the composition and toxicological
profile of venom collected from farm-raised N. atra. Methods: Venom was collected from third-generation captive bred N.
atra on a snake farm in Hunan Province, China. The venom was
analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis and
nano-liquid chromatography with electrospray ionization tandem mass
spectrometry. In addition, hemolytic activity, median lethal dose, serum
biochemical and histopathological parameters were accessed. Results: N. atra venom proteome was dominated by phospholipase
A2 (46.5%) and three-finger toxins (41.4 %), and a set of
common low relative abundance proteins, including cysteine-rich secretory
proteins (4.7%), NGF-beta (2.4%), snake venom metalloproteinase (1.5%),
glutathione peroxidase (0.6%), vespryn (0.3%), and 5ʹ-nucleotidases (0.2%)
were also found. Furthermore, the venom exhibited direct hemolytic activity,
neurotoxicity, myotoxicity, and high lethal potency in mice, with a
subcutaneous median lethal dose of 1.02 mg/kg. Histopathological analysis
and serum biochemical tests revealed that venom caused acute hepatic,
pulmonary and renal injury in mice. Conclusion: This study revealed the composition and toxicity of venom collected from
farm-raised N. atra, thereby providing a reference for the
analysis of venom samples collected from captive-born venomous snakes in the
future.
Collapse
Affiliation(s)
- Gang Xiao
- Hunan Agricultural University, China; Hunan Agricultural University, China
| | - Junqi Liu
- Hunan Agricultural University, China; Hunan Institute of Animal and Veterinary Science, China
| | - Lingfeng Peng
- Hunan Agricultural University, China; Hunan Agricultural University, China
| | - Yang Yang
- Hunan Agricultural University, China
| | - Zhiliang Sun
- Hunan Agricultural University, China; Hunan Agricultural University, China
| |
Collapse
|
4
|
Insights into individual variations in nematocyst venoms from the giant jellyfish Nemopilema nomurai in the Yellow Sea. Sci Rep 2019; 9:3361. [PMID: 30833625 PMCID: PMC6399247 DOI: 10.1038/s41598-019-40109-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
The giant jellyfish, Nemopilema nomurai, is widely distributed from the Eastern China Sea to the northern part of the Yellow Sea and has resulted in numerous hospitalizations in coastal areas of China, especially in Northern China. Our previous studies have revealed sting-related proteins in the venom of the jellyfish N. nomurai by using experimental and omics-based approaches; however, the variable symptoms of patients who have been stung by N. nomurai are not fully understood. This limited knowledge led to an examination of whether intraspecific variations occur in the venom of different N. nomurai. In the present study, 13 specimens of N. nomurai were collected from the Yellow Sea, and their venom was characterized by profiling differences in biochemical properties and biological activities. SDS-PAGE analysis presented recognizable differences in the number, intensity and presence of some protein bands. Moreover, enzymatic assays revealed considerable quantitative variations in metalloproteinase activity and PLA2-like activity. In particular, zymography assays of proteases demonstrated the general presence of abundant metalloproteinases in jellyfish nematocyst venom; however, the catalytic activities varied greatly among some specific metalloproteinases in the 28–46 kDa or 57–83 kDa range. Hemolytic assays using sheep erythrocytes suggested a predominant variance in the toxicities of different individual jellyfish venoms, with the difference between the most hemolytic and the least hemolytic venom as large as 77-fold. The current data suggested remarkable variations in the nematocyst venoms of individual N. nomurai jellyfish. These observations will provide a new understanding of the clinical manifestations induced by N. nomurai jellyfish stings and will therefore have important implications for preventing and treating jellyfish envenomations.
Collapse
|
5
|
Miller DW, Jones AD, Goldston JS, Rowe MP, Rowe AH. Sex Differences in Defensive Behavior and Venom of The Striped Bark Scorpion Centruroides vittatus (Scorpiones: Buthidae). Integr Comp Biol 2016; 56:1022-1031. [PMID: 27471227 DOI: 10.1093/icb/icw098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Studies of venom variability have advanced from describing the mechanisms of action and relative potency of medically important toxins to understanding the ecological and evolutionary causes of the variability itself. While most studies have focused on differences in venoms among taxa, populations, or age-classes, there may be intersexual effects as well. Striped bark scorpions (Centruroides vittatus) provide a good model for examining sex differences in venom composition and efficacy, as this species exhibits dramatic sexual dimorphism in both size and defensive behavior; when threatened by an enemy, larger, slower females stand and fight while smaller, fleeter males prefer to run. We here add evidence suggesting that male and female C. vittatus indeed have different defensive propensities; when threatened via an electrical stimulus, females were more likely to sting than were males. We reasoned that intersexual differences in defensive phenotypes would select for venoms with different functions in the two sexes; female venoms should be effective at predator deterrence, whereas male venoms, less utilized defensively, might be better suited to capturing prey or courting females. This rationale led to our predictions that females would inject more venom and/or possess more painful venom than males. We were wrong. While females do inject more venom than males in a defensive sting, females are also larger; when adjusted for body size, male and female C. vittatus commit equal masses of venom in a sting to a potential enemy. Additionally, house mice (Mus musculus) find an injection of male venom more irritating than an equal amount of female venom, likely because male venom contains more of the toxins that induce pain. Taken together, our results suggest that identifying the ultimate causes of venom variability will, as we move beyond adaptive storytelling, be hard-won.
Collapse
Affiliation(s)
- D W Miller
- *Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - A D Jones
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - J S Goldston
- *Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - M P Rowe
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A H Rowe
- Neuroscience Program and Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Boumaiza S, Oussedik-Oumehdi H, Laraba-Djebari F. Pathophysiological effects of Cerastes cerastes and Vipera lebetina venoms: Immunoneutralization using anti-native and anti-60Co irradiated venoms. Biologicals 2016; 44:1-11. [DOI: 10.1016/j.biologicals.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/09/2015] [Indexed: 01/02/2023] Open
|
7
|
Santoro ML, do Carmo T, Cunha BHL, Alves AF, Zelanis A, Serrano SMDT, Grego KF, Sant’Anna SS, Barbaro KC, Fernandes W. Ontogenetic Variation in Biological Activities of Venoms from Hybrids between Bothrops erythromelas and Bothrops neuwiedi Snakes. PLoS One 2015; 10:e0145516. [PMID: 26714190 PMCID: PMC4699835 DOI: 10.1371/journal.pone.0145516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/05/2015] [Indexed: 12/29/2022] Open
Abstract
Lance-headed snakes are found in Central and South America, and they account for most snakebites in Brazil. The phylogeny of South American pitvipers has been reviewed, and the presence of natural and non-natural hybrids between different species of Bothrops snakes demonstrates that reproductive isolation of several species is still incomplete. The present study aimed to analyze the biological features, particularly the thrombin-like activity, of venoms from hybrids born in captivity, from the mating of a female Bothrops erythromelas and a male Bothrops neuwiedi, two species whose venoms are known to display ontogenetic variation. Proteolytic activity on azocoll and amidolytic activity on N-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA) were lowest when hybrids were 3 months old, and increased over body growth, reaching values similar to those of the father when hybrids were 12 months old. The clotting activity on plasma diminished as hybrids grew; venoms from 3- and 6-months old hybrids showed low clotting activity on fibrinogen (i.e., thrombin-like activity), like the mother venom, and such activity was detected only when hybrids were older than 1 year of age. Altogether, these results point out that venom features in hybrid snakes are genetically controlled during the ontogenetic development. Despite the presence of the thrombin-like enzyme gene(s) in hybrid snakes, they are silenced during the first six months of life.
Collapse
Affiliation(s)
| | - Thaís do Carmo
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo-SP, Brazil
| | | | | | - André Zelanis
- Laboratório Especial de Toxinologia Aplicada and Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo-SP, Brazil
| | - Solange Maria de Toledo Serrano
- Laboratório Especial de Toxinologia Aplicada and Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo-SP, Brazil
| | | | | | | | - Wilson Fernandes
- Laboratório de Herpetologia, Instituto Butantan, São Paulo-SP, Brazil
| |
Collapse
|
8
|
Dias GS, Kitano ES, Pagotto AH, Sant’anna SS, Rocha MMT, Zelanis A, Serrano SMT. Individual Variability in the Venom Proteome of Juvenile Bothrops jararaca Specimens. J Proteome Res 2013; 12:4585-98. [DOI: 10.1021/pr4007393] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gabriela S. Dias
- Laboratório
Especial de Toxinologia Aplicada - CeTICS, Instituto Butantan, São
Paulo, 05503-900, Brazil
| | - Eduardo S. Kitano
- Laboratório
Especial de Toxinologia Aplicada - CeTICS, Instituto Butantan, São
Paulo, 05503-900, Brazil
- Instituto de Química,
Departamento de Bioquímica, Universidade de São Paulo, São Paulo, 05508-070, Brazil
| | - Ana H. Pagotto
- Laboratório
Especial de Toxinologia Aplicada - CeTICS, Instituto Butantan, São
Paulo, 05503-900, Brazil
| | - Sávio S. Sant’anna
- Laboratório
de Herpetologia, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Marisa M. T. Rocha
- Laboratório
de Herpetologia, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - André Zelanis
- Laboratório
Especial de Toxinologia Aplicada - CeTICS, Instituto Butantan, São
Paulo, 05503-900, Brazil
| | - Solange M. T. Serrano
- Laboratório
Especial de Toxinologia Aplicada - CeTICS, Instituto Butantan, São
Paulo, 05503-900, Brazil
| |
Collapse
|