1
|
Wang Y, Luo Z, Lei S, Li S, Li X, Yuan C. Effects and mechanism of gating modifier spider toxins on the hERG channel. Toxicon 2020; 189:56-64. [PMID: 33212100 DOI: 10.1016/j.toxicon.2020.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 10/23/2022]
Abstract
Jingzhaotoxin-I, -III, -IV, -XIII, and -35 (JZTX-I, -III, -IV, -XIII, and -35), gating modifier toxins isolated from the venom of the Chinese tarantula Chilobrachys Jingzhao, were reported to act on cardiac sodium channels and Kv channels. JZTX-I and JZTX-XIII inhibited the hERG channel with the IC50 value of 626.9 nM and 612.6 nM, respectively. JZTX-III, -IV, and -35 share high sequence similarity with JZTX-I and JZTX-XIII, but they showed much lower affinity on the hERG channel compared with JZTX-I and JZTX-XIII. The inhibitory potency of the above five toxins on the hERG channel was not in accordance with their affinity on the Nav1.5 and Kv2.1 channels, indicating that the bioactive surfaces of the five toxins interacting with hERG, Nav1.5 and Kv2.1 are at least in part different. Structure-function analysis of the gating modifier toxins suggested that the functional bioactive surface binding to the hERG channel consists of a conserved hydrophobic patch, surrounding acidic residues (Glu10 in JZTX-XIII, Glu11 in JZTX-I), and basic residues which may be different from residues binding to the Kv2.1 channel.
Collapse
Affiliation(s)
- Yingyi Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhengyi Luo
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Lei
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuji Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaowen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chunhua Yuan
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Deng M, Jiang L, Luo X, Tao H, Liang S. Jingzhaotoxin-X, a gating modifier of Kv4.2 and Kv4.3 potassium channels purified from the venom of the Chinese tarantula Chilobrachys jingzhao. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190043. [PMID: 32536941 PMCID: PMC7269146 DOI: 10.1590/1678-9199-jvatitd-2019-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background The tarantula Chilobrachys jingzhao is one of the largest venomous spiders in China. In previous studies, we purified and characterized at least eight peptides from C. jingzhao venom. In this report, we describe the purification and characterization of Jingzhaotoxin-X (JZTX-X), which selectively blocks Kv4.2 and Kv4.3 potassium channels. Methods JZTX-X was purified using a combination of cation-exchange HPLC and reverse-phase HPLC. The amino-acid sequence was determined by automated Edman degradation and confirmed by mass spectrometry (MS). Voltage-gated ion channel currents were recorded in HEK293t cells transiently transfected with a variety of ion channel constructs. In addition, the hyperalgesic activity of JZTX-X and the toxin´s effect on motor function were assessed in mice. Results JZTX-X contained 31 amino acids, with six cysteine residues that formed three disulfide bonds within an inhibitory cysteine knot (ICK) topology. In whole-cell voltage-clamp experiments, JZTX-X inhibited Kv4.2 and Kv4.3 potassium channels in a concentration- and voltage-dependent manner, without affecting other ion channels (Kv1.1, 1.2, 1.3, 2.1, delayed rectifier potassium channels, high- and low-voltage-activated Ca2+ channels, and voltage-gated sodium channels Nav1.5 and 1.7). JZTX-X also shifted the voltage-dependent channel activation to more depolarized potentials, whereas extreme depolarization caused reversible toxin binding to Kv4.2 channels. JZTX-X shifted the Kv4.2 and Kv4.3 activities towards a resting state, since at the resting potential the toxin completely inhibited the channels, even in the absence of an applied physical stimulus. Intrathecal or intraplantar injection of JZTX-X caused a long-lasting decrease in the mechanical nociceptive threshold (hyperalgesia) but had no effect on motor function as assessed in the rotarod test. Conclusions JZTX-X selectively suppresses Kv4.2 and Kv4.3 potassium channel activity in a concentration- and voltage-dependent manner and causes long-lasting mechanical hyperalgesia.
Collapse
Affiliation(s)
- Meichun Deng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xuan Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
3
|
Deng M, Jiang L, Luo X, Tao H, Liang S. Jingzhaotoxin-X, a gating modifier of Kv4.2 and Kv4.3 potassium channels purified from the venom of the Chinese tarantula Chilobrachys jingzhao. J Venom Anim Toxins Incl Trop Dis 2020. [DOI: 10.1590//1678-9199-jvatitd-2019-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | - Huai Tao
- Hunan University of Chinese Medicine, China
| | | |
Collapse
|
4
|
Zhang Y, Luo J, He J, Rong M, Zeng X. JZTX-V Targets the Voltage Sensor in Kv4.2 to Inhibit I to Potassium Channels in Cardiomyocytes. Front Pharmacol 2019; 10:357. [PMID: 31040778 PMCID: PMC6476928 DOI: 10.3389/fphar.2019.00357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Kv4 potassium channels are responsible for transient outward K+ currents in the cardiac action potential (AP). Previous experiments by our group demonstrated that Jingzhaotoxin-V (JZTX-V) selectively inhibits A-type potassium channels. However, the specific effects of JZTX-V on the transient outward (Ito) current of cardiomyocytes and underlying mechanism of action remain unclear. In the current study, 100 nM JZTX-V effectively inhibited the Ito current and extended the action potential duration (APD) of neonatal rat ventricular myocytes (NRVM). We further analyzed the effects of JZTX-V on Kv4.2, a cloned channel believed to underlie the Ito current in rat cardiomyocytes. JZTX-V inhibited the Kv4.2 current with a half-maximal inhibitory concentration (IC50) of 13 ± 1.7 nM. To establish the molecular mechanism underlying the inhibitory action of JZTX-V on Kv4.2, we performed alanine scanning mutagenesis of Kv4.2 and JZTX-V and assessed the effects of the mutations on binding activities of the proteins. Interestingly, the Kv4.2 mutations V285A, F289A, and V290A reduced the affinity for JZTX-V while I275A and L277A increased the affinity for JZTX-V. Moreover, mutation of positively charged residues (R20 and K22) of JZTX-V and the hydrophobic patch (formed by W5, M6, and W7) led to a significant reduction in toxin sensitivity, indicating that the hydrophobic patch and electrostatic interactions played key roles in the binding of JZTX-V with Kv4.2. Data from our study have shed light on the specific roles and molecular mechanisms of JZTX-V in the regulation of Ito potassium channels and supported its utility as a potential novel antiarrhythmic drug.
Collapse
Affiliation(s)
- Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ji Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Juan He
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mingqiang Rong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiongzhi Zeng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Tao H, Chen X, Deng M, Xiao Y, Wu Y, Liu Z, Zhou S, He Y, Liang S. Interaction site for the inhibition of tarantula Jingzhaotoxin-XI on voltage-gated potassium channel Kv2.1. Toxicon 2016; 124:8-14. [PMID: 27810559 DOI: 10.1016/j.toxicon.2016.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/27/2023]
Abstract
Jingzhaotoxin-XI (JZTX-XI) is a 34-residue peptide from the Chinese tarantula Chilobrachys jingzhao venom that potently inhibits both voltage-gated sodium channel Nav1.5 and voltage-gated potassium channel Kv2.1. In the present study, we further showed that JZTX-XI blocked Kv2.1 currents with the IC50 value of 0.39 ± 0.06 μM. JZTX-XI significantly shifted the current-voltage (I-V) curves and normalized conductance-voltage (G-V) curves of Kv2.1 channel to more depolarized voltages. Ala-scanning mutagenesis analyses demonstrated that mutants I273A, F274A, and E277A reduced toxin binding affinity by 10-, 16-, and 18-fold, respectively, suggesting that three common residues (I273, F274, E277) in the Kv2.1 S3b segment contribute to the formation of JZTX-XI receptor site, and the acidic residue Glu at the position 277 in Kv2.1 is the most important residue for JZTX-XI sensitivity. A single replacement of E277 with Asp(D) increased toxin inhibitory activity. These results establish that JZTX-XI inhibits Kv2.1 activation by trapping the voltage sensor in the rested state through a similar mechanism to that of HaTx1, but these two toxins have small differences in the most crucial molecular determinant. Furthermore, the in-depth investigation of the subtle differences in molecular determinants may be useful for increasing our understanding of the molecular details regarding toxin-channel interactions.
Collapse
Affiliation(s)
- Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Meichun Deng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yucheng Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuanyuan Wu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhonghua Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Sainan Zhou
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yingchun He
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
6
|
Jingzhaotoxin-35, a novel gating-modifier toxin targeting both Nav1.5 and Kv2.1 channels. Toxicon 2014; 92:90-6. [DOI: 10.1016/j.toxicon.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 11/24/2022]
|
7
|
SUN MEINA, ZHAO XUEJIAO, ZHAO HANDONG, ZHANG WEIGUANG, LI FENGLAN, CHEN MINGZI, LI HUI, LI GUANGCHAO. Recombinant Escherichia coli Trx-JZTX-III represses the proliferation of mouse hepatocellular carcinoma cells through induction of cell cycle arrest. Mol Med Rep 2013; 7:1800-4. [DOI: 10.3892/mmr.2013.1432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/22/2013] [Indexed: 11/05/2022] Open
|