1
|
Yu C, Yin X, Li A, Li R, Yu H, Xing R, Liu S, Li P. Toxin metalloproteinases exert a dominant influence on pro-inflammatory response and anti-inflammatory regulation in jellyfish sting dermatitis. J Proteomics 2024; 292:105048. [PMID: 37981009 DOI: 10.1016/j.jprot.2023.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Toxin metalloproteinases are the primary components responsible for various toxicities in jellyfish venom, and there is still no effective specific therapy for jellyfish stings. The comprehension of the pathogenic mechanisms underlying toxin metalloproteinases necessitates further refinement. In this study, we conducted a differential analysis of a dermatitis mouse model induced by jellyfish Nemopilema nomurai venom (NnNV) samples with varying levels of metalloproteinase activity. Through skin tissue proteomics and serum metabolomics, the predominant influence of toxin metalloproteinase activity on inflammatory response was revealed, and the signal pathway involved in its regulation was identified. In skin tissues, many membrane proteins were significantly down-regulated, which might cause tissue damage. The expression of pro-inflammatory factors was mainly regulated by PI3K-Akt signaling pathway. In serum, many fatty acid metabolites were significantly down-regulated, which might be the anti-inflammation feedback regulated by NF-κB p65 signaling pathway. These results reveal the dermatitis mechanism of toxin metalloproteinases and provide new therapeutic targets for further studies. SIGNIFICANCE: Omics is an important method to analyze the pathological mechanism and discover the key markers, which can reveal the pathological characteristics of jellyfish stings. Our research first analyzed the impact of toxin metalloproteinases on jellyfish sting dermatitis by skin proteomics and serum metabolomics. The present results suggest that inhibition of toxin metalloproteinases may be an effective treatment strategy, and provide new references for further jellyfish sting studies.
Collapse
Affiliation(s)
- Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujing Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
2
|
Piontek M, Andreosso A, Smout M. Rapid and permanent cytotoxic effects of venom from Chiropsella bronzie and Malo maxima on human skeletal and cardiac muscle cells. Toxicon 2023; 233:107250. [PMID: 37572796 DOI: 10.1016/j.toxicon.2023.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Jellyfish envenomation is a global public health risk; Cubozoans (box jellyfish) are a prevalent jellyfish class with some species causing potent and potentially fatal envenomation in tropical Australian waters. Previous studies have explored the mechanism of action of venom from the lethal Cubozoan Chironex fleckeri and from Carukia barnesi (which causes "Irukandji syndrome"), but mechanistic knowledge to develop effective treatment is still limited. This study performed an in-vitro cytotoxic examination of the venoms of Chiropsella bronzie and Malo maxima, two understudied species that are closely related to Chironex fleckeri and Carukia barnesi respectively. Venom was applied to human skeletal muscle cells and human cardiomyocytes while monitoring with the xCELLigence system. Chiropsella bronzie caused rapid cytotoxicity at concentrations as low as 58.8 μg/mL. Malo maxima venom caused a notable increase in cell index, a measure of cell viability, followed by cytotoxicity after 24-h venom exposure at ≥11.2 μg/mL on skeletal muscle cells. In contrast, the cardiomyocytes mostly showed significant increased cell index at the higher M. maxima concentrations tested. These findings show that these venoms can exert cytotoxic effects and Malo maxima venom mainly caused a sustained increase in cell index across both human cell lines, suggesting a different mode of action to Chiropsella bronzie. As these venoms show different real-world envenomation symptoms, the different cellular toxicity profiles provide a first step towards developing improved understanding of mechanistic pathways and novel envenomation treatment.
Collapse
Affiliation(s)
- Melissa Piontek
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Molecular Development of Therapeutics, James Cook University, Cairns, Queensland, Australia.
| | - Athena Andreosso
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Michael Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Molecular Development of Therapeutics, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
3
|
Li R, Yu H, Li A, Yu C, Li P. Identification and characterization of the key lethal toxin from jellyfish Cyanea nozakii. Int J Biol Macromol 2023; 230:123176. [PMID: 36621741 DOI: 10.1016/j.ijbiomac.2023.123176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Jellyfish Cyanea nozakii venom is a complex mixture of various toxins, most of which are proteinous biological macromolecules and are considered to be responsible for clinical symptoms or even death after a severe sting. Previous transcriptome and proteome analysis identified hundreds of toxins in the venom, including hemolysins, C-type lectin, phospholipase A2, potassium channel inhibitor, metalloprotease, etc. However, it is not clear which toxin in the venom plays the most important role in lethality. Herein, we isolated the key lethal toxin (Letoxcn) from jellyfish Cyanea nozakii using anion exchange chromatography, size-exclusion chromatography, and cation exchange chromatography. The molecular weight of Letoxcn is ∼50 kDa with the N-terminal sequences of QADAEKVNLPVGVCV. Peptide mass fingerprinting analysis of Letoxcn shows that it may have some motifs of phospholipase, metalloproteinase, thrombin-like enzyme, potassium channel toxin, etc. However, only metalloproteinase activity but no hemolytic, PLA2, or blood coagulation activity was observed from in vitro toxicity analysis. Overall, this study uncovered and characterized the key lethal toxin in the venom of jellyfish Cyanea nozakii, which will not only help to reveal the molecule mechanism of the lethality, but also develop effective treatment like antivenom for this jellyfish sting in the future.
Collapse
Affiliation(s)
- Rongfeng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Aoyu Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
4
|
Little M, Pereira P, Seymour J. Differences in Cardiac Effects of Venoms from Tentacles and the Bell of Live Carukia barnesi: Using Non-Invasive Pulse Wave Doppler. Toxins (Basel) 2020; 13:toxins13010019. [PMID: 33383955 PMCID: PMC7824248 DOI: 10.3390/toxins13010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Carukia barnesi was the first in an expanding list of cubozoan jellyfish whose sting was identified as causing Irukandji syndrome. Nematocysts present on both the bell and tentacles are known to produce localised stings, though their individual roles in Irukandji syndrome have remained speculative. This research examines differences through venom profiling and pulse wave Doppler in a murine model. The latter demonstrates marked measurable differences in cardiac parameters. The venom from tentacles (CBVt) resulted in cardiac decompensation and death in all mice at a mean of 40 min (95% CL: ± 11 min), whereas the venom from the bell (CBVb) did not produce any cardiac dysfunction nor death in mice at 60 min post-exposure. This difference is pronounced, and we propose that bell exposure is unlikely to be causative in severe Irukandji syndrome. To date, all previously published cubozoan venom research utilised parenterally administered venom in their animal models, with many acknowledging their questionable applicability to real-world envenomation. Our model used live cubozoans on anaesthetised mice to simulate normal envenomation mechanics and actual expressed venoms. Consequently, we provide validity to the parenteral methodology used by previous cubozoan venom research.
Collapse
Affiliation(s)
- Mark Little
- Emergency Department, Cairns Base Hospital, Cairns, QLD 4870, Australia;
| | - Peter Pereira
- Emergency Department, Cairns Base Hospital, Cairns, QLD 4870, Australia;
- Correspondence:
| | - Jamie Seymour
- Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD 4878, Australia;
| |
Collapse
|
5
|
Hwang DH, Lee H, Choudhary I, Kang C, Chae J, Kim E. Protective effect of epigallocatechin-3-gallate (EGCG) on toxic metalloproteinases-mediated skin damage induced by Scyphozoan jellyfish envenomation. Sci Rep 2020; 10:18644. [PMID: 33122740 PMCID: PMC7596074 DOI: 10.1038/s41598-020-75269-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/05/2020] [Indexed: 01/22/2023] Open
Abstract
Jellyfish stingings are currently raising serious public health concerns around the world. Hence, the search for an effective first aid reagent for the envenomation has been the goal of many investigators in the field. There have been a few previous reports of in vivo as well as in vivo studies suggesting the metalloproteinase activity of scyphozoan jellyfish venom, such as N. nomurai venom (NnV), plays a major role in the pathogenesis. These results have inspired us to develop a metalloproteinase inhibitor as a candidate for the treatment of Scyphozoan jellyfish envenomation. It has been previously demonstrated that the major polyphenol component in green tea, epigallocatechin-3-gallate (EGCG), can inhibit metalloproteinase activity of snake venoms. In fact, plant polyphenols as potential therapeutics have been shown to exert positive effects on neutralizing snake venoms and toxins. In the present study, we found that EGCG significantly inhibits the toxic proteases of NnV in a concentration-dependent manner. Human keratinocyte (HaCaT) and Human dermal fibroblast (HDF) cell culture studies showed that EGCG treatment can protect the cells from NnV-induced cytotoxicity which has been accompanied by the down-regulation of human matrix metalloproteinase (MMP)-2 and -9. Simulated rat NnV envenomation study disclosed that topical treatments with EGCG considerably ameliorated the progression of the dermonecrotic lesions caused by NnV. EGCG also reduced the activitions of tissue MMP-2 and MMP-9, which seem to be crucial players in the dermal toxic responses induced by NnV. Therefore, we propose that EGCG might be an effective therapeutic agent for the treatment of cutaneoous jellyfish symptoms.
Collapse
Affiliation(s)
- Du Hyeon Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Hyunkyoung Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Indu Choudhary
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Jinho Chae
- Marine Environmental Research and Information Laboratory, B1101, 17 Gosan-ro 148beon-gil, Gunpo-si, Gyeonggi-do, 15850, Korea.
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea. .,Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
6
|
Seymour J, Saggiomo S, Lam W, Pereira P, Little M. Non-invasive assessment of the cardiac effects of Chironex fleckeri and Carukia barnesi venoms in mice, using pulse wave doppler. Toxicon 2020; 185:15-25. [PMID: 32615183 DOI: 10.1016/j.toxicon.2020.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 11/28/2022]
Abstract
Both Chironex fleckeri venom (CFV) and Carukia barnesi venoms (CBV) are known to cause significant cardiac morbidity and mortality. Many animal studies have demonstrated cardiac dysfunction with these venoms. This study specifically examines the systolic and diastolic cardiac functions using non-invasive pulse wave doppler. Mitral and aortic doppler sonograms of anaesthetised mice were obtained utilising a 10 MHz doppler probe. These continuous sonograms were analysed to ascertain changes in cardiac function before and after the parenteral administration of the test venoms. We found that CFV administration causes rapid cardiac dysfunction without a change in heart rate. Analysis of the resulting sonograms shows both systolic and diastolic dysfunction which together is suggestive of a progressively poorly compliant, contracted left ventricle. Additionally, the rapidity of cardiac dysfunction suggests a direct effect of CFV on myocardial cells. In contrast CBV showed a moderate immediate inotropic and chronotropic effect that was sustained until precipitous cardiac decompensation. This is consistent with the hypotheses of a toxin induced stress cardiomyopathy from sustained catecholaminergic activity.
Collapse
Affiliation(s)
- Jamie Seymour
- Australian Institute of Tropical Health and Medicine, James Cook University, Australia
| | - Silvia Saggiomo
- Australian Institute of Tropical Health and Medicine, James Cook University, Australia
| | - Willis Lam
- Dept of Cardiology, Cairns Hospital, Australia
| | - Peter Pereira
- Dept of Emergency Medicine, Cairns Hospital, Australia.
| | - Mark Little
- Dept of Emergency Medicine, Cairns Hospital, Australia
| |
Collapse
|
7
|
Cantoni JL, Andreosso A, Seymour J. An in vitro comparison of venom recovery methods and results on the box jellyfish, Chironex fleckeri. Toxicon 2020; 184:94-98. [PMID: 32533959 DOI: 10.1016/j.toxicon.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/22/2023]
Abstract
The emergence of novel venom extraction techniques over the last half-century has greatly facilitated advances in the field of cnidarian research. A new recovery protocol utilizing ethanol as the primary stimulant in nematocyst discharge was recently published, however in vitro examination of the venom on organic models was not performed. This present study reports an original comparison of the chemically-induced discharge technique in vitro with a commonly used saltwater extraction method. Size-exclusion chromatography revealed distinct differences in venom profiles between the two methods: the saltwater recovery method FPLC profile and SDS-PAGE gel were similar to previously published results, whereas the ethanol-induced method was not. SDS-PAGE gel revealed distinct 40-55 kDa bands of previously identified cardiotoxic proteins recovered from the saltwater method, whereas the ethanol-induced method yielded degraded venom protein bands. A concentration-response curve generated through xCELLigence Real-Time Cell Analysis (RTCA) revealed a dramatic decrease in human cardiomyocyte activity when venom recovered via saltwater discharge was applied to these cells. With the exception of one sample, all ethanol-induced recovered venom failed to prompt a concentration-dependent decrease in cell survival when applied to human cardiomyocytes, resulting in a significant difference in IC50 concentrations between the compared venom samples. The data presented here facilitates an improved understanding of the parameters and analyses that are essential when developing and utilizing novel techniques for future cnidarian venom extraction research and supports the conclusion that recovery of venom from the tentacles of the box jellyfish Chironex fleckeri by ethanol is not an effective, efficient, or comprehensive extraction method compared to the published method of saltwater degradation of tentacles and bead mill extraction.
Collapse
Affiliation(s)
- Jamie L Cantoni
- Australian Institute of Tropical Health and Medicine, Faculty of Medicine, Health and Molecular Sciences, James Cook University, McGregor Road, 4878, Cairns, Australia
| | - Athena Andreosso
- Australian Institute of Tropical Health and Medicine, Faculty of Medicine, Health and Molecular Sciences, James Cook University, McGregor Road, 4878, Cairns, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine, Faculty of Medicine, Health and Molecular Sciences, James Cook University, McGregor Road, 4878, Cairns, Australia.
| |
Collapse
|
8
|
Neale V, Smout MJ, Seymour JE. Spine-bellied sea snake (Hydrophis curtus) venom shows greater skeletal myotoxicity compared with cardiac myotoxicity. Toxicon 2018; 143:108-117. [PMID: 29355573 DOI: 10.1016/j.toxicon.2018.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/31/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
For the first time the impedance-based xCELLigence real-time cell analysis system was used to measure the myotoxicity of sea snake venom. With a focus on the spine-bellied sea snake (Hydrophis curtus), the venom of four sea snake species and three terrestrial snake species were compared for myotoxicity against a human skeletal muscle cell line (HSkMC). Hydrophis curtus venom was also tested on a human cardiac muscle cell line (HCM). Surprisingly, all four sea snake venoms tested on HSkMC produced an initial 100-280% rise in xCELLigence cell index that peaked within the first two hours before falling. The cell index rise of H. curtus venom was correlated with the WST-1 cell proliferation assay, which demonstrated an increase in mitochondrial metabolism. The myotoxicity of H. curtus was 4.7-8.2 fold less potent than the other sea snakes tested, the Australian beaked sea snake (Hydrophis zweifeli), the elegant sea snake (Hydrophis elegans) and the olive sea snake (Aipysurus laevis). If our cell-based results translate to H. curtus envenomations, this implies that H. curtus would be less myotoxic than the other three. Yet the myotoxicity of H. curtus venom to cardiac muscle cells was nine times weaker than for skeletal muscle cells, providing evidence that the venom has a selective effect on skeletal muscle cells. This evidence, combined with the slow-acting nature of the venom, supports a digestive role for sea snake myotoxins.
Collapse
Affiliation(s)
- Vanessa Neale
- College of Public Health, Medical and Veterinary Sciences, James Cook University, McGregor Road, Smithfield, Cairns 4878, Australia; Australian Institute of Tropical Health and Medicine (AITHM) and Centre for Biodiscovery and Molecular Development of Therapeutics (CBMDT), James Cook University, McGregor Road, Smithfield, Cairns 4878, Australia.
| | - Michael J Smout
- Australian Institute of Tropical Health and Medicine (AITHM) and Centre for Biodiscovery and Molecular Development of Therapeutics (CBMDT), James Cook University, McGregor Road, Smithfield, Cairns 4878, Australia.
| | - Jamie E Seymour
- Australian Institute of Tropical Health and Medicine (AITHM) and Centre for Biodiscovery and Molecular Development of Therapeutics (CBMDT), James Cook University, McGregor Road, Smithfield, Cairns 4878, Australia.
| |
Collapse
|
9
|
Qu X, Xia X, Lai Z, Zhong T, Li G, Fan L, Shu W. Apoptosis-like cell death induced by nematocyst venom from Chrysaora helvola Brandt jellyfish and an in vitro evaluation of commonly used antidotes. Comp Biochem Physiol C Toxicol Pharmacol 2016; 180:31-9. [PMID: 26538054 DOI: 10.1016/j.cbpc.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 11/15/2022]
Abstract
The present work investigated the in vitro cytotoxicity of nematocyst venom (NV) from Chrysaora helvola Brandt (C. helvola) jellyfish against human MCF-7 and CNE-2 tumor cell lines. Potent cytotoxicity was quantified using the MTT assay (LC50=12.07±3.13 and 1.6±0.22μg/mL (n=4), respectively). Apoptosis-like cell death was further confirmed using the LDH release assay and Annexin V/PI double staining-based flow cytometry analysis. However, only activation of caspase-4 was observed. It is possible that some caspase-independent pathways were activated by the NV treatment. Since no reference or antivenom is available, the effects of several commonly used antidotes on the cytotoxicity of NV were examined on more sensitive CNE-2 cells to determine the appropriate emergency measures for envenomation by C. helvola. The phospholipase A2 (PLA2) inhibitor para-bromophenacyl bromide (pBPB) showed no protective effect, while Mg(2+) potentiated cytotoxicity. Voltage-gated L-type Ca(2+) channel blockers (verapamil, nifedipine and felodipine) and Na-Ca(2+) exchanger inhibitor KB-R7943 also showed no effect. Assays using Ca(2+)-free culture media or the intracellular Ca(2+) chelator BAPTA also could not inhibit the cytotoxicity. Taken together, these results suggest that PLA2 and Ca(2+) are not directly involved in the cytotoxicity of NV from C. helvola. Our work also suggests caution regarding the choice for first aid for envenomation by C. helvola jellyfish.
Collapse
Affiliation(s)
- Xiaosheng Qu
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China.
| | - Xianghua Xia
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China
| | - Zefeng Lai
- Department of Pharmacology, Guangxi Medicinal University, Nanning 530021, China
| | - Taozheng Zhong
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China
| | - Gang Li
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China
| | - Lanlan Fan
- Guangxi University of Traditional Chinese Medicine, Nanning, 530200, China
| | - Wei Shu
- Department of Cell Biology and Genetics, Guangxi Medicinal University, Nanning 530021, China.
| |
Collapse
|
10
|
Ponce D, Brinkman DL, Luna-Ramírez K, Wright CE, Dorantes-Aranda JJ. Comparative study of the toxic effects of Chrysaora quinquecirrha (Cnidaria: Scyphozoa) and Chironex fleckeri (Cnidaria: Cubozoa) venoms using cell-based assays. Toxicon 2015; 106:57-67. [PMID: 26385314 DOI: 10.1016/j.toxicon.2015.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
The venoms of jellyfish cause toxic effects in diverse biological systems that can trigger local and systemic reactions. In this study, the cytotoxic and cytolytic effects of Chrysaora quinquecirrha and Chironex fleckeri venoms were assessed and compared using three in vitro assays. Venoms from both species were cytotoxic to fish gill cells and rat cardiomyocytes, and cytolytic in sheep erythrocytes. Both venoms decreased cell viability in a concentration-dependent manner; however, the greatest difference in venom potencies was observed in the fish gill cell line, wherein C. fleckeri was 12.2- (P = 0.0005) and 35.7-fold (P < 0.0001) more potently cytotoxic than C. quinquecirrha venom with 30 min and 120 min cell exposure periods, respectively. Gill cells and rat cardiomyocytes exposed to venoms showed morphological changes characterised by cell shrinkage, clumping and detachment. The cytotoxic effects of venoms may be caused by a group of toxic proteins that have been previously identified in C. fleckeri and other cubozoan jellyfish species. In this study, proteins homologous to CfTX-1 and CfTX-2 toxins from C. fleckeri and CqTX-A toxin from Chironex yamaguchii were identified in C. quinquecirrha venom using tandem mass spectrometry. The presence and relative abundance of these proteins may explain the differences in venom potency between cubozoan and scyphozoan jellyfish and may reflect their importance in the action of venoms.
Collapse
Affiliation(s)
- Dalia Ponce
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia; Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Diane L Brinkman
- Australian Institute of Marine Science, P. M. B. No 3, Townsville Mail Centre, Townsville, Queensland 4810, Australia.
| | - Karen Luna-Ramírez
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Christine E Wright
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia; Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Juan José Dorantes-Aranda
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
11
|
Zhang L, He Q, Wang Q, Zhang B, Wang B, Xu F, Wang T, Xiao L, Zhang L. Intracellular Ca(2+) overload induced by extracellular Ca(2+) entry plays an important role in acute heart dysfunction by tentacle extract from the jellyfish Cyanea capillata. Cardiovasc Toxicol 2015; 14:260-74. [PMID: 24563080 DOI: 10.1007/s12012-014-9250-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The exact mechanism of acute heart dysfunction caused by jellyfish venom remains unclear for the moment. In the present study, we examined the problem caused by the tentacle extract (TE) from the jellyfish Cyanea capillata at the levels of whole animal, isolated heart, primarily cultured cardiomyocytes, and intracellular Ca(2+). The heart indexes, including HR, APs, LVPs, and MMLs, were all decreased significantly by TE in both whole animal and Langendorff-perfused isolated heart model. Imbalance of cardiac oxygen supply and demand also took place. In both Ca(2+)-containing and Ca(2+)-free bathing solutions, TE could cause obvious cytoplasmic Ca(2+) overload in NRVMs, but the cytoplasmic Ca(2+) increased faster, Ca(2+) overload peaks arrived earlier, and the morphological changes were more severe under the extracellular Ca(2+)-containing condition. L-type Ca(2+) channel blockers, as well as the inhibitor of ryanodine receptor (ryanodine), could improve the viability of NRVMs. Moreover, diltiazem significantly inhibited the acute heart dysfunction caused by TE in both Langendorff isolated heart model and whole animal. These results suggested that intracellular Ca(2+) overload induced by extracellular Ca(2+) entry plays an important role in acute heart failure by TE from the jellyfish C. capillata. Inhibition of extracellular Ca(2+) influx is a promising antagonistic alternative for heart damage by jellyfish venom.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Badré S. Bioactive toxins from stinging jellyfish. Toxicon 2014; 91:114-25. [PMID: 25286397 DOI: 10.1016/j.toxicon.2014.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 01/22/2023]
Abstract
Jellyfish blooms occur throughout the world. Human contact with a jellyfish induces a local reaction of the skin, which can be painful and leave scaring. Systemic symptoms are also observed and contact with some species is lethal. A number of studies have evaluated the in vitro biological activity of whole jellyfish venom or of purified fractions. Hemolytic, cytotoxic, neurotoxic or enzymatic activities are commonly observed. Some toxins have been purified and characterized. A family of pore forming toxins specific to Medusozoans has been identified. There remains a need for detailed characterization of jellyfish toxins to fully understand the symptoms observed in vivo.
Collapse
Affiliation(s)
- Sophie Badré
- Prevor, Moulin de Verville, 95760 Valmondois, France.
| |
Collapse
|
13
|
Dose and time dependence of box jellyfish antivenom. J Venom Anim Toxins Incl Trop Dis 2014; 20:34. [PMID: 25161664 PMCID: PMC4144694 DOI: 10.1186/1678-9199-20-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022] Open
Abstract
Background The effectiveness of the currently available box jellyfish (Chironex fleckeri) antivenom has been subject of debate for many years. To assess whether the box jellyfish antivenom has the ability to attenuate venom-induced damage at cellular level, the present study analyzed the dose and time dependence of the antivenom in a cell-based assay. Methods Different doses of antivenom were added to venom and subsequently administered to cells and the cell index was measured using xCelligence Technology (ACEA Biosciences). Similarly, antivenom and venom were incubated over different time periods and cell survival measured as stated above. For both experiments, the cell index was plotted as a measure of cell survival against the dose or incubation time and significance was determined with the use of a one-way ANOVA with a LSD post hoc test. Results Increasing concentrations of antivenom significantly augmented cell survival, with a concentration of approximately five times the currently recommended dose for human envenomation, causing the first significant increase in cell survival compared venom alone. Further, cell survival improved with increasing incubation time of venom and antivenom prior to addition to the cells, indicating that box jellyfish antivenom requires approximately 70 minutes to neutralize C. fleckeri venom. Conclusion The presented results suggest that the currently recommended dose of antivenom requires adjustment, and more importantly, a human trial to test the effects of higher concentrations is also necessary. Further, antivenom has delayed neutralizing effects (i.e. after 70 minutes) which underlines the eminence of immediate and prolonged cardiopulmonary resuscitation in victims suffering from a C. fleckeri venom-induced cardiovascular collapse.
Collapse
|
14
|
Chaousis S, Smout M, Wilson D, Loukas A, Mulvenna J, Seymour J. Rapid short term and gradual permanent cardiotoxic effects of vertebrate toxins from Chironex fleckeri (Australian box jellyfish) venom. Toxicon 2014; 80:17-26. [PMID: 24462661 DOI: 10.1016/j.toxicon.2014.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/29/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
The vertebrate cardiotoxic components of the venom produced by the Australian box jellyfish, Chironex fleckeri, have not previously been isolated. We have uncovered for the first time, three distinct cytotoxic crude fractions from within the vertebrate cardiotoxic peak of C. fleckeri venom by monitoring viability of human muscle cells with an impedance based assay (ACEA xCELLigence system) measuring cell detachment as cytotoxicity which was correlated with a reduction in cell metabolism using a cell proliferation (MTS) assay. When the effects of the venom components on human cardiomyocytes and human skeletal muscle cells were compared, two fractions were found to specifically affect cardiomyocytes with distinct temporal profiles (labelled Crude Toxic Fractions (CTF), α and β). A third fraction (CTF-γ) was toxic to both muscle cell types and therefore not cardio specific. The vertebrate, cardio specific CTF-α and CTF-β, presented distinct activities; CTF-α caused rapid but short term cell detachment and reduction in cell metabolism with enhanced activity at lower concentrations than CTF-β. This activity was not permanent, with cell reattachment and subsequent increased metabolism of heart muscle cells observed when exposed to all but the highest concentrations of CTF-α tested. The cytotoxic effect of CTF-β took twice as long to act on the cells compared to CTF-α, however, the activity was permanent. Furthermore, we showed that the two fractions combined have a synergistic effect causing a much stronger and faster cell detachment (death) when combined than the sum of the individual effects of each toxin. These data presented here improves the current understanding of the toxic mechanisms of the Australian box jellyfish, C. fleckeri, and provides a basis for in vivo research of these newly isolated toxic fractions.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Queensland Tropical Health Alliance (QTHA), Building E4, James Cook University, McGregor Road, QLD 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics (CBMDT), James Cook University, McGregor Road, Cairns 4878, Australia; School of Marine and Tropical Biology, James Cook University, Smithfield, QLD, Australia.
| | - Michael Smout
- Queensland Tropical Health Alliance (QTHA), Building E4, James Cook University, McGregor Road, QLD 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics (CBMDT), James Cook University, McGregor Road, Cairns 4878, Australia
| | - David Wilson
- Queensland Tropical Health Alliance (QTHA), Building E4, James Cook University, McGregor Road, QLD 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics (CBMDT), James Cook University, McGregor Road, Cairns 4878, Australia
| | - Alex Loukas
- Queensland Tropical Health Alliance (QTHA), Building E4, James Cook University, McGregor Road, QLD 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics (CBMDT), James Cook University, McGregor Road, Cairns 4878, Australia
| | - Jason Mulvenna
- Centre for Biodiscovery and Molecular Development of Therapeutics (CBMDT), James Cook University, McGregor Road, Cairns 4878, Australia
| | - Jamie Seymour
- Queensland Tropical Health Alliance (QTHA), Building E4, James Cook University, McGregor Road, QLD 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics (CBMDT), James Cook University, McGregor Road, Cairns 4878, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, McGregor Road, Cairns 4878, Australia
| |
Collapse
|
15
|
Brinkman DL, Konstantakopoulos N, McInerney BV, Mulvenna J, Seymour JE, Isbister GK, Hodgson WC. Chironex fleckeri (box jellyfish) venom proteins: expansion of a cnidarian toxin family that elicits variable cytolytic and cardiovascular effects. J Biol Chem 2014; 289:4798-812. [PMID: 24403082 DOI: 10.1074/jbc.m113.534149] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The box jellyfish Chironex fleckeri produces extremely potent and rapid-acting venom that is harmful to humans and lethal to prey. Here, we describe the characterization of two C. fleckeri venom proteins, CfTX-A (∼40 kDa) and CfTX-B (∼42 kDa), which were isolated from C. fleckeri venom using size exclusion chromatography and cation exchange chromatography. Full-length cDNA sequences encoding CfTX-A and -B and a third putative toxin, CfTX-Bt, were subsequently retrieved from a C. fleckeri tentacle cDNA library. Bioinformatic analyses revealed that the new toxins belong to a small family of potent cnidarian pore-forming toxins that includes two other C. fleckeri toxins, CfTX-1 and CfTX-2. Phylogenetic inferences from amino acid sequences of the toxin family grouped CfTX-A, -B, and -Bt in a separate clade from CfTX-1 and -2, suggesting that the C. fleckeri toxins have diversified structurally and functionally during evolution. Comparative bioactivity assays revealed that CfTX-1/2 (25 μg kg(-1)) caused profound effects on the cardiovascular system of anesthetized rats, whereas CfTX-A/B elicited only minor effects at the same dose. Conversely, the hemolytic activity of CfTX-A/B (HU50 = 5 ng ml(-1)) was at least 30 times greater than that of CfTX-1/2. Structural homology between the cubozoan toxins and insecticidal three-domain Cry toxins (δ-endotoxins) suggests that the toxins have a similar pore-forming mechanism of action involving α-helices of the N-terminal domain, whereas structural diversification among toxin members may modulate target specificity. Expansion of the cnidarian toxin family therefore provides new insights into the evolutionary diversification of box jellyfish toxins from a structural and functional perspective.
Collapse
Affiliation(s)
- Diane L Brinkman
- From the Australian Institute of Marine Science, P.M.B. No 3, Townsville Mail Centre, Townsville, Queensland 4810, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel) 2013; 6:108-51. [PMID: 24379089 PMCID: PMC3920253 DOI: 10.3390/toxins6010108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 01/20/2023] Open
Abstract
The toxicity of Cnidaria is a subject of concern for its influence on human activities and public health. During the last decades, the mechanisms of cell injury caused by cnidarian venoms have been studied utilizing extracts from several Cnidaria that have been tested in order to evaluate some fundamental parameters, such as the activity on cell survival, functioning and metabolism, and to improve the knowledge about the mechanisms of action of these compounds. In agreement with the modern tendency aimed to avoid the utilization of living animals in the experiments and to substitute them with in vitro systems, established cell lines or primary cultures have been employed to test cnidarian extracts or derivatives. Several cnidarian venoms have been found to have cytotoxic properties and have been also shown to cause hemolytic effects. Some studied substances have been shown to affect tumour cells and microorganisms, so making cnidarian extracts particularly interesting for their possible therapeutic employment. The review aims to emphasize the up-to-date knowledge about this subject taking in consideration the importance of such venoms in human pathology, the health implications and the possible therapeutic application of these natural compounds.
Collapse
Affiliation(s)
- Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| | - Luigi Pane
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| |
Collapse
|
17
|
Pereira P, Seymour JE. In vitro effects on human heart and skeletal cells of the venom from two cubozoans, Chironex fleckeri and Carukia barnesi. Toxicon 2013; 76:310-5. [DOI: 10.1016/j.toxicon.2013.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/08/2013] [Accepted: 10/17/2013] [Indexed: 11/28/2022]
|
18
|
Pharmacological studies of tentacle extract from the jellyfish Cyanea capillata in isolated rat aorta. Mar Drugs 2013; 11:3335-49. [PMID: 23999662 PMCID: PMC3806464 DOI: 10.3390/md11093335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 12/23/2022] Open
Abstract
Our previous studies demonstrated that tentacle extract (TE) from the jellyfish, Cyanea capillata, could cause a dose-dependent increase of systolic blood pressure, which seemed to be the result of direct constriction of vascular smooth muscle (VSM). The aim of this study is to investigate whether TE could induce vasoconstriction in vitro and to explore its potential mechanism. Using isolated aorta rings, a direct contractile response of TE was verified, which showed that TE could induce concentration-dependent contractile responses in both endothelium-intact and -denuded aortas. Interestingly, the amplitude of contraction in the endothelium-denuded aorta was much stronger than that in the endothelium-intact one, implying that TE might also bring a weak functional relaxation in addition to vasoconstriction. Further drug intervention experiments indicated that the functional vasodilation might be mediated by nitric oxide, and that TE-induced vasoconstriction could be attributed to calcium influx via voltage-operated calcium channels (VOCCs) from the extracellular space, as well as sarcoplasmic reticulum (SR) Ca²⁺ release via the inositol 1,4,5-trisphosphate receptor (IP₃R), leading to an increase in [Ca²⁺](c), instead of activation of the PLC/DAG/PKC pathway or the sympathetic nerve system.
Collapse
|
19
|
Cegolon L, Heymann WC, Lange JH, Mastrangelo G. Jellyfish stings and their management: a review. Mar Drugs 2013; 11:523-50. [PMID: 23434796 PMCID: PMC3640396 DOI: 10.3390/md11020523] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/22/2012] [Accepted: 01/25/2013] [Indexed: 02/06/2023] Open
Abstract
Jellyfish (cnidarians) have a worldwide distribution. Despite most being harmless, some species may cause local and also systemic reactions. Treatment of jellyfish envenomation is directed at: alleviating the local effects of venom, preventing further nematocyst discharges and controlling systemic reactions, including shock. In severe cases, the most important step is stabilizing and maintaining vital functions. With some differences between species, there seems to be evidence and consensus on oral/topical analgesics, hot water and ice packs as effective painkillers and on 30 s application of domestic vinegar (4%-6% acetic acid) to prevent further discharge of unfired nematocysts remaining on the skin. Conversely, alcohol, methylated spirits and fresh water should be carefully avoided, since they could massively discharge nematocysts; pressure immobilization bandaging should also be avoided, as laboratory studies show that it stimulates additional venom discharge from nematocysts. Most treatment approaches are presently founded on relatively weak evidence; therefore, further research (especially randomized clinical trials) is strongly recommended. Dissemination of appropriate treatment modalities should be deployed to better inform and educate those at risk. Adequate signage should be placed at beaches to notify tourists of the jellyfish risk. Swimmers in risky areas should wear protective equipment.
Collapse
Affiliation(s)
- Luca Cegolon
- Department of Molecular Medicine, Padua University, Padua 35128, Italy; E-Mail:
- School of Public Health, Imperial College London, St. Mary’s Campus, London WC2 1PG, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-049-8212543; Fax: +39-049-8212542
| | | | - John H. Lange
- Envirosafe Training and Consultants, 2366 Golden Mile Highway, Pittsburgh, PA 15239, USA; E-Mail:
| | | |
Collapse
|
20
|
Venom and cnidome ontogeny of the cubomedusae Chironex fleckeri. Toxicon 2012; 60:1335-41. [DOI: 10.1016/j.toxicon.2012.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/25/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022]
|