1
|
Sofyantoro F, Septriani NI, Yudha DS, Wicaksono EA, Priyono DS, Putri WA, Primahesa A, Raharjeng ARP, Purwestri YA, Nuringtyas TR. Zebrafish as Versatile Model for Assessing Animal Venoms and Toxins: Current Applications and Future Prospects. Zebrafish 2024; 21:231-242. [PMID: 38608228 DOI: 10.1089/zeb.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Animal venoms and toxins hold promise as sources of novel drug candidates, therapeutic agents, and biomolecules. To fully harness their potential, it is crucial to develop reliable testing methods that provide a comprehensive understanding of their effects and mechanisms of action. However, traditional rodent assays encounter difficulties in mimicking venom-induced effects in human due to the impractical venom dosage levels. The search for reliable testing methods has led to the emergence of zebrafish (Danio rerio) as a versatile model organism for evaluating animal venoms and toxins. Zebrafish possess genetic similarities to humans, rapid development, transparency, and amenability to high-throughput assays, making it ideal for assessing the effects of animal venoms and toxins. This review highlights unique attributes of zebrafish and explores their applications in studying venom- and toxin-induced effects from various species, including snakes, jellyfish, cuttlefish, anemones, spiders, and cone snails. Through zebrafish-based research, intricate physiological responses, developmental alterations, and potential therapeutic interventions induced by venoms are revealed. Novel techniques such as CRISPR/Cas9 gene editing, optogenetics, and high-throughput screening hold great promise for advancing venom research. As zebrafish-based insights converge with findings from other models, the comprehensive understanding of venom-induced effects continues to expand, guiding the development of targeted interventions and promoting both scientific knowledge and practical applications.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | | - Ega Adhi Wicaksono
- Faculties of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Sendi Priyono
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Alfian Primahesa
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Anita Restu Puji Raharjeng
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Science and Technology, Universitas Islam Negeri Raden Fatah Palembang, South Sumatera, Indonesia
| | - Yekti Asih Purwestri
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Rini Nuringtyas
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
2
|
The Molecular Composition of Peptide Toxins in the Venom of Spider Lycosa coelestis as Revealed by cDNA Library and Transcriptomic Sequencing. Toxins (Basel) 2023; 15:toxins15020143. [PMID: 36828457 PMCID: PMC9959208 DOI: 10.3390/toxins15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
In the so-called "struggle for existence" competition, the venomous animals developed a smart and effective strategy, envenomation, for predation and defense. Biochemical analysis revealed that animal venoms are chemical pools of proteinase, peptide toxins, and small organic molecules with various biological activities. Of them, peptide toxins are of great molecular diversity and possess the capacity to modulate the activity of ion channels, the second largest group of drug targets expressed on the cell membrane, which makes them a rich resource for developing peptide drug pioneers. The spider Lycosa coelestis (L. coelestis) commonly found in farmland in China is a dominant natural enemy of agricultural pests; however, its venom composition and activity were never explored. Herein, we conducted cDNA library and transcriptomic sequencing of the venom gland of L. coelestis, which identified 1131 high-quality expressed sequence tags (ESTs), grouped into three categories denoted as toxin-like ESTs (597, 52.79%), cellular component ESTs (357, 31.56%), and non-matched ESTs (177, 15.65%). These toxin-like ESTs encode 98 non-reductant toxins, which are artificially divided into 11 families based on their sequence homology and cysteine frameworks (2-14 cysteines forming 1-7 disulfide bonds to stabilize the toxin structure). Furthermore, RP-HPLC purification combined with off-line MALDI-TOF analysis have detected 147 different peptides physically existing in the venom of L. coelestis. Electrophysiology analysis confirmed that the venom preferably inhibits the voltage-gated calcium channels in rat dorsal root ganglion neurons. Altogether, the present study has added a great lot of new members to the spider toxin superfamily and built the foundation for characterizing novel active peptides in the L. coelestis venom.
Collapse
|
3
|
Evaluation of sample preparation protocols for spider venom profiling by MALDI-TOF MS. Toxicon 2017; 133:18-25. [DOI: 10.1016/j.toxicon.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 11/20/2022]
|
4
|
Zhang F, Liu C, Tan H, Wang H, Jiang Y, Liang S, Zhang F, Liu Z. A survey of the venom of the spider Lycosa vittata by biochemical, pharmacological and transcriptomic analyses. Toxicon 2015; 107:335-43. [DOI: 10.1016/j.toxicon.2015.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
|
5
|
Xu X, Wang H, Zhang F, Hu Z, Liang S, Liu Z. A Comparative Analysis of the Venom Gland Transcriptomes of the Fishing Spiders Dolomedes mizhoanus and Dolomedes sulfurous. PLoS One 2015; 10:e0139908. [PMID: 26445494 PMCID: PMC4596850 DOI: 10.1371/journal.pone.0139908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/18/2015] [Indexed: 11/18/2022] Open
Abstract
Dolomedes sulfurous and Dolomedes mizhoanus are predaceous arthropods catching and feeding on small fish. They live in the same area and have similar habits. Their venoms exhibit some similarities and differences in biochemical and electrophysiological properties. In the present work, we first performed a transcriptomic analysis by constructing the venom gland cDNA library of D. sulfurous and 127 novel putative toxin sequences were consequently identified, which were classified into eight families. This venom gland transcriptome was then compared with that of D. mizhoanus, which revealed that the putative toxins from both spider venoms might have originated from the same gene ancestors although novel toxins were evolved independently in the two spiders. The putative toxins from both spiders contain 6-12 cysteine residues forming seven cysteine patterns. As revealed by blast search, the two venoms are rich in neurotoxins targeting ion channels with pharmacological and therapeutic significance. This study provides insight into the venoms of two closely related species of spider, which will be of use for future investigations into the structure and function of their toxins.
Collapse
Affiliation(s)
- Xunxun Xu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hengyun Wang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Fang Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhaotun Hu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Songping Liang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhonghua Liu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| |
Collapse
|
6
|
Vargas RA, Sarmiento K, Vásquez IC. Zebrafish (Danio rerio): A Potential Model for Toxinological Studies. Zebrafish 2015. [DOI: 10.1089/zeb.2015.1102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rafael Antonio Vargas
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karen Sarmiento
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Isabel Cristina Vásquez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
7
|
Cooper AM, Kelln WJ, Hayes WK. Venom regeneration in the centipede Scolopendra polymorpha: evidence for asynchronous venom component synthesis. ZOOLOGY 2015; 117:398-414. [PMID: 25456977 DOI: 10.1016/j.zool.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/21/2014] [Accepted: 06/27/2014] [Indexed: 01/15/2023]
Abstract
Venom regeneration comprises a vital process in animals that rely on venom for prey capture and defense. Venom regeneration in scolopendromorph centipedes likely influences their ability to subdue prey and defend themselves, and may influence the quantity and quality of venom extracted by researchers investigating the venom's biochemistry. We investigated venom volume and total protein regeneration during the 14-day period subsequent to venom extraction in the North American centipede Scolopendra polymorpha. We further tested the hypothesis that venom protein components, separated by reversed-phase fast protein liquid chromatography (RP-FPLC), undergo asynchronous (non-parallel) synthesis. During the first 48 h, volume and protein mass increased linearly. Protein regeneration lagged behind volume regeneration, with 65–86% of venom volume and 29–47% of protein mass regenerated during the first 2 days. No additional regeneration occurred over the subsequent 12 days, and neither volume nor protein mass reached initial levels 7 months later (93% and 76%, respectively). Centipede body length was negatively associated with rate of venom regeneration. Analysis of chromatograms of individual venom samples revealed that 5 of 10 chromatographic regions and 12 of 28 peaks demonstrated changes in percent of total peak area (i.e., percent of total protein) among milking intervals, indicating that venom proteins are regenerated asynchronously. Moreover, specimens from Arizona and California differed in relative amounts of some venom components. The considerable regeneration of venom occurring within the first 48 h, despite the reduced protein content, suggests that predatory and defensive capacities are minimally constrained by the timing of venom replacement.
Collapse
|
8
|
de Lera Ruiz M, Kraus RL. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J Med Chem 2015; 58:7093-118. [PMID: 25927480 DOI: 10.1021/jm501981g] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tremendous therapeutic potential of voltage-gated sodium channels (Na(v)s) has been the subject of many studies in the past and is of intense interest today. Na(v)1.7 channels in particular have received much attention recently because of strong genetic validation of their involvement in nociception. Here we summarize the current status of research in the Na(v) field and present the most relevant recent developments with respect to the molecular structure, general physiology, and pharmacology of distinct Na(v) channel subtypes. We discuss Na(v) channel ligands such as small molecules, toxins isolated from animal venoms, and the recently identified Na(v)1.7-selective antibody. Furthermore, we review eight characterized ligand binding sites on the Na(v) channel α subunit. Finally, we examine possible therapeutic applications of Na(v) ligands and provide an update on current clinical studies.
Collapse
Affiliation(s)
- Manuel de Lera Ruiz
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Richard L Kraus
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|
9
|
Kozlov SA, Lazarev VN, Kostryukova ES, Selezneva OV, Ospanova EA, Alexeev DG, Govorun VM, Grishin EV. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus. Sci Data 2014; 1:140023. [PMID: 25977780 PMCID: PMC4322566 DOI: 10.1038/sdata.2014.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/09/2014] [Indexed: 01/03/2023] Open
Abstract
A comprehensive transcriptome analysis of an expressed sequence tag (EST) database of the spider Dolomedes fimbriatus venom glands using single-residue distribution analysis (SRDA) identified 7,169 unique sequences. Mature chains of 163 different toxin-like polypeptides were predicted on the basis of well-established methodology. The number of protein precursors of these polypeptides was appreciably numerous than the number of mature polypeptides. A total of 451 different polypeptide precursors, translated from 795 unique nucleotide sequences, were deduced. A homology search divided the 163 mature polypeptide sequences into 16 superfamilies and 19 singletons. The number of mature toxins in a superfamily ranged from 2 to 49, whereas the diversity of the original nucleotide sequences was greater (2-261 variants). We observed a predominance of inhibitor cysteine knot toxin-like polypeptides among the cysteine-containing structures in the analyzed transcriptome bank. Uncommon spatial folds were also found.
Collapse
Affiliation(s)
- Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Vassili N. Lazarev
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Elena S. Kostryukova
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Oksana V. Selezneva
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
| | - Elena A. Ospanova
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
| | - Dmitry G. Alexeev
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Vadim M. Govorun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Eugene V. Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| |
Collapse
|
10
|
Nyffeler M, Pusey BJ. Fish predation by semi-aquatic spiders: a global pattern. PLoS One 2014; 9:e99459. [PMID: 24940885 PMCID: PMC4062410 DOI: 10.1371/journal.pone.0099459] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/14/2014] [Indexed: 11/19/2022] Open
Abstract
More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil). Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae), in two species of the superfamily Ctenoidea (family Ctenidae), and in one species of the superfamily Corinnoidea (family Liocranidae). The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences). There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae]) predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders). Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.
Collapse
Affiliation(s)
- Martin Nyffeler
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- * E-mail:
| | - Bradley J. Pusey
- Centre for Excellence in Natural Resource Management, The University of Western Australia, Albany, Australia
| |
Collapse
|
11
|
Olguín Y, Carrascosa LG, Lechuga LM, Young M. The effects of lipids and surfactants on TLR5-proteoliposome functionality for flagellin detection using surface plasmon resonance biosensing. Talanta 2014; 126:136-44. [PMID: 24881544 DOI: 10.1016/j.talanta.2014.03.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
The use of proteoliposomes as affinity elements in conjunction with a surface plasmon resonance sensor is a high-sensitivity alternative for the detection of multiple analytes. However, one of the most important aspects of these conformations is maintaining the functionality of the immobilized protein, which is determined by the choice of lipids and surfactants employed in the reconstitutions. Previously, we demonstrated the functionality of TLR5-proteoliposomes as screening affinity elements of bacterial flagellin. In this new study we change the conditions of immobilization of TLR5 and evaluate how the fluidity of the membrane and the final size of the liposomes affect the functionality of the construct and thus increase their utility as an affinity element for design of new biosensors. In particular, we used reconstructions into preformed liposomes composed of the lipids POPC, POPC-DMPC and POPC-POPE mediated by the use of surfactants OG, Triton X100, and DDM, respectively. The affinity results were evaluated by SPR technology proteoliposomes and were correlated with the anisotropic change in the membrane status; the final sizes of the proteoliposomes were estimated. Our results clearly show the dependence of fluidity and final size of the proteoliposomes with surface plasmon resonance affinity measurements.
Collapse
Affiliation(s)
- Y Olguín
- Biotechnology Center, Federico Santa Maria Technical University, Valparaíso, Chile.
| | - L G Carrascosa
- Nanobiosensor and Bioanalytical Applications Group, Institut Catàla de Nanociencia i Nanotecnología (ICN2), CSIC and CIBER-BBN, Bellaterra, Barcelona, Spain
| | - L M Lechuga
- Nanobiosensor and Bioanalytical Applications Group, Institut Catàla de Nanociencia i Nanotecnología (ICN2), CSIC and CIBER-BBN, Bellaterra, Barcelona, Spain
| | - M Young
- Biotechnology Center, Federico Santa Maria Technical University, Valparaíso, Chile
| |
Collapse
|
12
|
Li J, Li D, Zhang F, Wang H, Yu H, Liu Z, Liang S. A comparative study of the molecular composition and electrophysiological activity of the venoms from two fishing spiders Dolomedes mizhoanus and Dolomedes sulfurous. Toxicon 2014; 83:35-42. [DOI: 10.1016/j.toxicon.2014.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/11/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
|
13
|
Jiang L, Liu C, Duan Z, Deng M, Tang X, Liang S. Transcriptome analysis of venom glands from a single fishing spider Dolomedes mizhoanus. Toxicon 2013; 73:23-32. [PMID: 23851222 DOI: 10.1016/j.toxicon.2013.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/19/2013] [Accepted: 07/03/2013] [Indexed: 11/15/2022]
Abstract
The spider venom is a large pharmacological repertoire composed of different types of bioactive peptide toxins. Despite the importance of spider toxins in capturing terrestrial prey and defending themselves against predators, we know little about the venom components from the spider acting on the fish. Here we constructed a cDNA library of a pair of venomous glands from a single fish-hunting spider Dolomedes mizhoanus. A total of 356 high-quality expressed sequence tags (ESTs) were obtained from the venom gland cDNA library and analyzed. These transcripts were further classified into 45 clusters (19 contigs and 26 singletons), most of which encoded cystine knot toxins (CKTs) and non-CKTs. The ESTs coding for 53 novel CKT precursors were abundant transcripts in the venom glands of the spider D. mizhoanus, accounting for 76% of the total ESTs, the precursors of which were grouped into six families based on the sequence identity and the phylogenetic analysis. In addition, the non-CKTs deduced from 21% of the total ESTs were annotated by Gene Ontology terms and eukaryotic orthologous groups. Fifty-five CKT precursors deduced from 273 ESTs are the largest dataset for a single spider specimen to date. The results may contribute to discovering novel potential drug leads from spider venoms and a better understanding of the evolutionary relationship of the spider toxin.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | | | | | | | | | | |
Collapse
|