1
|
Jia Y, Wang Z, Liang X, Tu C, Khalifa I, Wang C, Zhu Y, Chen H, Hu L, Li C. Unlocking the potential of persimmons: A comprehensive review on emerging technologies for post-harvest challenges, processing innovations, and prospective applications. Food Chem 2024; 459:140344. [PMID: 38991450 DOI: 10.1016/j.foodchem.2024.140344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Persimmons are widely acknowledged as a valuable source of both medicinal and nutritional components, providing a diverse spectrum of nutrients and phytochemicals. Despite these benefits, biases against persimmons persists due to their characteristic astringent flavor that sets them apart from other fruits. Although several studies have explored various aspects of persimmons, a comprehensive review that addresses post-harvest challenges, processing innovations, and potential applications is notably absent in the literature. This review aims to fill this gap by discussing a range of topics, including emerging preservation technologies, methods for detecting and eliminating astringency, identification of functional elements, health-promoting prospects, and advancements in processed persimmon products. The primary objective is to enhance the utilization of persimmons and promote the development of diverse, customized products, thereby fostering the emergence of functional and futuristic foods.
Collapse
Affiliation(s)
- Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Cunjian Tu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Chuang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yingheng Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Haoyu Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lanlan Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Wang R, Shi X, Li K, Bunker A, Li C. Activity and potential mechanisms of action of persimmon tannins according to their structures: A review. Int J Biol Macromol 2023; 242:125120. [PMID: 37263329 DOI: 10.1016/j.ijbiomac.2023.125120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
One distinguishing feature of the persimmon, that differentiates it from other fruits, is its high proanthocyanidins content, known as persimmon tannin (PT). Despite the poor absorption of PT in the small intestine, results from animal studies demonstrate that PT has many health benefits. Our goal in this review is to summarize the literature that elucidates the relationship between PT structure and activity. In addition, we also summarize the potential mechanisms underlying the health benefits that result from PT consumption; this includes the hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, antiradiation, antibacterial and antiviral, detoxification effects on snake venom, and the absorption of heavy metals and dyes. Studies show that PT is a structurally distinct proanthocyanidins that exhibits a high degree of polymerization. It is galloylation-rich and possesses unique A-type interflavan linkages in addition to the more common B-type interflavan bonds. Thus, PT is converted into oligomeric proanthocyanidins by depolymerization strategies, including the nucleophilic substitution reaction, acid hydrolysis, and hydrogenolysis. In addition, multiple health benefits exerted by PT mainly involve the inactivation of lipogenic and intracellular inflammatory signaling pathways, activation of the fatty acid oxidation signaling pathway, regulation of gut microbiota, and highly absorptive properties.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Alex Bunker
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Li J, Wang Q, Zou S, Song J, Zhang P, Wang F, Huang Y, He Q, Zhang L. Protective Effects of Epigallocatechin-3-gallate (EGCG) against the Jellyfish Nemopilema nomurai Envenoming. Toxins (Basel) 2023; 15:283. [PMID: 37104221 PMCID: PMC10142270 DOI: 10.3390/toxins15040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Jellyfish stings are the most common marine animal injuries worldwide, with approximately 150 million envenomation cases annually, and the victims may suffer from severe pain, itching, swelling, inflammation, arrhythmias, cardiac failure, or even death. Consequently, identification of effective first aid reagents for jellyfish envenoming is urgently needed. Here, we found that the polyphenol epigallocatechin-3-gallate (EGCG) markedly antagonized the hemolytic toxicity, proteolytic activity, and cardiomyocyte toxicity of the jellyfish Nemopilema nomurai venom in vitro and could prevent and treat systemic envenoming caused by N. nomurai venom in vivo. Moreover, EGCG is a natural plant active ingredient and widely used as a food additive without toxic side effects. Hence, we suppose that EGCG might be an effective antagonist against systemic envenoming induced by jellyfish venom.
Collapse
Affiliation(s)
- Jie Li
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Juxingsi Song
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Peipei Zhang
- Department of Marine Biological Injury and Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China
| | - Fan Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Yichao Huang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Qian He
- The Third Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| |
Collapse
|
4
|
Wang Z, Liu Z, Wu C, Liu S, Wang D, Hu C, Chen T, Ran Z, Gan W, Li G. Computational Analysis on Antioxidant Activity of Four Characteristic Structural Units from Persimmon Tannin. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010320. [PMID: 36614657 PMCID: PMC9821802 DOI: 10.3390/ma16010320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/03/2023]
Abstract
Antioxidants are molecules that can prevent the harmful effects of oxygen, help capture and neutralize free radicals, and thus eliminate the damage of free radicals to the human body. Persimmon tannin (PT) has excellent antioxidant activity, which is closely related to its molecular structure. We report here a comparative study of four characteristic structural units from PT (epicatechin gallate (ECG), epigallocatechin gallate (EGCG), A-type linked ECG dimer (A-ECG dimer), A-type linked EGCG dimer (A-EGCG dimer)) to explore the structure-activity relationship by using the density functional theory. Based on the antioxidation mechanism of hydrogen atom transfer, the most favorable active site for each molecule exerts antioxidant activity is determined. The structural parameters, molecular electrostatic potential, and frontier molecular orbital indicate that the key active sites are located on the phenolic hydroxyl group of the B ring for ECG and EGCG monomers, and the key active sites of the two dimers are located on the phenolic hydroxyl groups of the A and D' rings. The natural bond orbital and bond dissociation energy of the phenolic hydroxyl hydrogen atom show that the C11-OH in the ECG monomer and the C12-OH in the EGCG monomer are the most preferential sites, respectively. The most active site of the two A-linked dimers is likely located on the D' ring C20' phenolic hydroxyl group. Based on computational analysis of quantum chemical parameters, the A-ECG dimer is a more potent antioxidant than the A-EGCG dimer, ECG, and EGCG. This computational analysis provides the structure-activity relationship of the four characteristic units which will contribute to the development of the application of PT antioxidants in the future.
Collapse
Affiliation(s)
| | - Zhigao Liu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Chenxi Wu
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Songlin Liu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Dianhui Wang
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Chaohao Hu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Tao Chen
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhaojin Ran
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Weijiang Gan
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
5
|
Hwang DH, Lee H, Choudhary I, Kang C, Chae J, Kim E. Protective effect of epigallocatechin-3-gallate (EGCG) on toxic metalloproteinases-mediated skin damage induced by Scyphozoan jellyfish envenomation. Sci Rep 2020; 10:18644. [PMID: 33122740 PMCID: PMC7596074 DOI: 10.1038/s41598-020-75269-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/05/2020] [Indexed: 01/22/2023] Open
Abstract
Jellyfish stingings are currently raising serious public health concerns around the world. Hence, the search for an effective first aid reagent for the envenomation has been the goal of many investigators in the field. There have been a few previous reports of in vivo as well as in vivo studies suggesting the metalloproteinase activity of scyphozoan jellyfish venom, such as N. nomurai venom (NnV), plays a major role in the pathogenesis. These results have inspired us to develop a metalloproteinase inhibitor as a candidate for the treatment of Scyphozoan jellyfish envenomation. It has been previously demonstrated that the major polyphenol component in green tea, epigallocatechin-3-gallate (EGCG), can inhibit metalloproteinase activity of snake venoms. In fact, plant polyphenols as potential therapeutics have been shown to exert positive effects on neutralizing snake venoms and toxins. In the present study, we found that EGCG significantly inhibits the toxic proteases of NnV in a concentration-dependent manner. Human keratinocyte (HaCaT) and Human dermal fibroblast (HDF) cell culture studies showed that EGCG treatment can protect the cells from NnV-induced cytotoxicity which has been accompanied by the down-regulation of human matrix metalloproteinase (MMP)-2 and -9. Simulated rat NnV envenomation study disclosed that topical treatments with EGCG considerably ameliorated the progression of the dermonecrotic lesions caused by NnV. EGCG also reduced the activitions of tissue MMP-2 and MMP-9, which seem to be crucial players in the dermal toxic responses induced by NnV. Therefore, we propose that EGCG might be an effective therapeutic agent for the treatment of cutaneoous jellyfish symptoms.
Collapse
Affiliation(s)
- Du Hyeon Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Hyunkyoung Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Indu Choudhary
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Jinho Chae
- Marine Environmental Research and Information Laboratory, B1101, 17 Gosan-ro 148beon-gil, Gunpo-si, Gyeonggi-do, 15850, Korea.
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea. .,Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
6
|
Zhu W, Jia Y, Peng J, Li CM. Inhibitory Effect of Persimmon Tannin on Pancreatic Lipase and the Underlying Mechanism in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6013-6021. [PMID: 29806464 DOI: 10.1021/acs.jafc.8b00850] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pancreatic lipase (PL) is a critical enzyme associated with hyperlipidemia and obesity. A previous study of ours suggested that persimmon tannin (PT) was the main component accounting for the antihyperlipidemic effects of persimmon fruits, but the underlying mechanisms were unclear. In this present study, the inhibitory effect of PT on PL was studied and the possible mechanisms were evaluated by fluorescence spectroscopy, circular dichroism (CD) spectra, isothermal titration calorimetry (ITC), and molecular docking. PT had a high affinity to PL and inhibited the activity of PL with the half maximal inhibitory concertation (IC50) value of 0.44 mg/mL in a noncompetitive way. Furthermore, molecular docking revealed that the hydrogen bonding and π-π stacking was mainly responsible for the interaction. The strong inhibition of PT on PL in the gastrointestinal tract might be one mechanism for its lipid-lowering effect.
Collapse
Affiliation(s)
- Wei Zhu
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Yangyang Jia
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Jinming Peng
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Chun-Mei Li
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Food Science , Huazhong Agricultural University, Ministry of Education , Wuhan 430070 , China
| |
Collapse
|
7
|
Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Computational Studies of Snake Venom Toxins. Toxins (Basel) 2017; 10:E8. [PMID: 29271884 PMCID: PMC5793095 DOI: 10.3390/toxins10010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.
Collapse
Affiliation(s)
- Paola G Ojeda
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - David Ramírez
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - Jans Alzate-Morales
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
8
|
Nie RZ, Zhu W, Peng JM, Ge ZZ, Li CM. Comparison of disaggregative effect of A-type EGCG dimer and EGCG monomer on the preformed bovine insulin amyloid fibrils. Biophys Chem 2017; 230:1-9. [PMID: 28818314 DOI: 10.1016/j.bpc.2017.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/14/2022]
Abstract
In the present study, the disruptive effects of epigallocatechin-3-gallate (EGCG) and A-type dimeric epigallocatechin-3-gallate (A-type EGCG dimer) on the preformed bovine insulin amyloid fibrils were studied by several biophysical methods including thioflavin-T (ThT) fluorescence assay, 1-anilinonaphthalene-8-sulfonic (ANS) fluorescence assay, Congo red (CR) binding assay, dynamic light scattering (DLS), transmission electron microscopy (TEM), Gel electrophoresis (SDS-PAGE) and Bradford assay. Our results demonstrated that A-type EGCG dimer showed significantly more potential disaggregative effects on the bovine insulin amyloid fibrils than EGCG. A-type EGCG dimer could not only dramatically promote the disaggregation of the preformed bovine insulin amyloid fibrils, but also restructure the amyloid fibrils into amorphous aggregates. While, EGCG could only shorten and thin the fibrils, but induce no small amorphous aggregates. Our present results provided additional evidence for the more potent disaggregation effects of dimeric polyphenols than monomeric polyphenols and suggested that A-type EGCG dimer seems to have potential application as an excellent anti-amyloidogenic agent.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Ming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Zhen Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Mei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
9
|
Zhang Y, Li CM. The detoxifying effects of structural elements of persimmon tannin on Chinese cobra phospholipase A 2 correlated with their structural disturbing effects well. J Food Drug Anal 2017; 25:731-740. [PMID: 28911659 PMCID: PMC9328822 DOI: 10.1016/j.jfda.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/31/2016] [Accepted: 08/22/2016] [Indexed: 02/05/2023] Open
Abstract
The effects of persimmon tannin (PT) characteristic structural elements on Naja atra phospholipase A2 (PLA2)-induced lethality, myotoxicity, and hemolysis in mice models were determined. In addition, methods including surface plasmon resonance, dynamic light scattering, and Fourier transform infrared spectroscopy were explored to uncover the possible detoxifying mechanisms of PT on snake venom PLA2. Our results revealed that PT characteristic elements (EGCG, ECG, A-type EGCG dimer, and A-type ECG dimer) could neutralize the lethality, myotoxicity, and hemolysis of PLA2. Moreover, the detoxifying effects of the four structural elements correlated with their structural disturbing effects well. Our results proved that A-type EGCG dimer and A-type ECG dimer may be structural requirements for the detoxifying effects of PT. We propose that the high affinity of A-type EGCG dimer and A-type ECG dimer for PLA2 and the considerable spatial structural disturbance of PLA2 induced by the dimers may be responsible for their antilethality, antimyotoxicity, and antihemolysis on Chinese cobra PLA2in vivo.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Mei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
10
|
Both non-covalent and covalent interactions were involved in the mechanism of detoxifying effects of persimmon tannin on Chinese cobra PLA 2. Fitoterapia 2017; 120:41-51. [DOI: 10.1016/j.fitote.2017.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022]
|
11
|
Nie RZ, Zhu W, Peng JM, Ge ZZ, Li CM. A-type dimeric epigallocatechin-3-gallate (EGCG) is a more potent inhibitor against the formation of insulin amyloid fibril than EGCG monomer. Biochimie 2016; 125:204-12. [PMID: 27079519 DOI: 10.1016/j.biochi.2016.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/25/2016] [Indexed: 12/21/2022]
Abstract
Because fibrillary protein aggregates is regarded to be closely associated with many diseases such as Alzheimer's disease, diabetes, and Parkinson's disease, growing interest and researches have been focused on finding potential fibrillation inhibitors. In the present study, the inhibitory effects of epigallocatechin-3-gallate (EGCG) and A-type dimeric epigallocatechin-3-gallate (A-type EGCG dimer) on the formation of insulin fibrillation were compared by multi-dimensional approaches including thioflavin-T (ThT) fluorescence assay, 1-anilinonaphthalene-8-sulfonic (ANS) fluorescence assay, dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD) spectroscopy. Our results confirmed that A-type EGCG dimer is a more potent inhibitor against the formation of bovine insulin amyloid fibril than EGCG. In addition, A-type EGCG dimer could not only inhibit insulin amyloid fibril formation, but also change the aggregation pathway and induce bovine insulin into amorphous aggregates. The results of the present study may provide a new guide on finding novel anti-amyloidogenic agents.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Ming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen-Zhen Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Mei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
12
|
|
13
|
Wang W, Chen QF, Yin RX, Zhu JJ, Li QB, Chang HH, Wu YB, Michelson E. Clinical features and treatment experience: a review of 292 Chinese cobra snakebites. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:648-655. [PMID: 24577231 DOI: 10.1016/j.etap.2013.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Although Chinese cobra snakebite is the most common type of snake venenation in China, it still lacks a comprehensive and systematic description. Hence, we aimed to study Chinese cobra bite cases with particular attention to demography, epidemiology and clinical profile. In this study, a total of 292 cases of Chinese cobra snakebite, presenting between January 1, 2008 and December 31, 2012, were retrospectively reviewed. To investigate the effect of treatment at different presentation times (time from snakebite to admission), the patients were divided into two groups: group A included 133 cases that presented <12 h after the bite; group B included 159 cases that presented ≥12 h after the bite. To assess the correlation between application of a tourniquet and skin grafting, the cases were re-divided into two groups according to whether or not a tourniquet was used after the snakebite: tourniquet group (n=220) and non-tourniquet group (n=72). The results showed that Chinese cobra snakebites were most commonly seen during the summer, in the upper limbs, and in males, young adults, and snake-hunters. Group A experienced milder intoxication than group B (P<0.001). The rate of skin grafting was significantly higher in the tourniquet group (20.0%, compared with 9.7% in the non-tourniquet group, P<0.05). The results of this study indicate that anti-cobra venom and swift admission (within 12 h of the snakebite) are recommended for Chinese cobra snakebite. Tourniquet use is not recommended.
Collapse
Affiliation(s)
- Wei Wang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Quan-Fang Chen
- Department of Respiratory, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Rui-Xing Yin
- Department of Cardiology, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Ji-Jin Zhu
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Qi-Bin Li
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Hai-Hua Chang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Yan-Bi Wu
- Department of Respiratory, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Edward Michelson
- Department of Emergency, University Hospitals Case Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, 44106 OH, USA.
| |
Collapse
|