1
|
Díaz C, Mack-Prado M, Bonilla E, Chang-Castillo A, Bonilla F, Ortiz N, Angulo D, Sasa M. Venom composition of Tityus cerroazul (Scorpiones: Buthidae) reveals similarities with venoms of other scorpion species from northern South America. Toxicon 2025; 262:108385. [PMID: 40348196 DOI: 10.1016/j.toxicon.2025.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/08/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Several buthid scorpions from Costa Rica and Panama have been extensively characterized for their venom components. One exception is Tityus cerroazul, a peculiar species classified in the subgenus Tityus, separated from the rest of the members of the genus that inhabit this geographic region. Although it has been described as a species that prefers natural areas with low human impact, which could explain the few reported envenomation cases, pre-clinical studies indicate that its venom may be toxic to mammals. This analysis describes the venom composition and enzymatic activities of T. cerroazul specimens from Panama. Among the identified venom components, we report the presence of NaTxs TdNa5 and bactridin-1 from T. discrepans from Venezuela, as well as partial sequences corresponding to other putative Na+ and K+ toxins, antimicrobial peptides, protease inhibitors, and secreted proteins, mostly found in the venoms of the T. (Atreus) species. We also confirmed the presence of the four peptides (Tce1-Tce4) identified by previous molecular analyses. In conclusion, our study suggests that T. cerroazul does not align closely with the venom of species currently assigned to the subgenus Tityus. Instead, it shows a greater similarity to the venom of the Atreus subgenus, which includes most of the Tityus species that inhabit the region. This finding underscores the need to revise its taxonomic classification based on molecular phylogenetic characters.
Collapse
Affiliation(s)
- Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, Costa Rica.
| | - Marcelo Mack-Prado
- Centro para Investigaciones y Respuestas en Ofidiología (CEREO), Universidad de Panamá, Republic of Panama; Departamento de Ciencias Ambientales, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Republic of Panama
| | - Eleodoro Bonilla
- Centro para Investigaciones y Respuestas en Ofidiología (CEREO), Universidad de Panamá, Republic of Panama
| | - Arturo Chang-Castillo
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Natalia Ortiz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, Costa Rica
| | - Diego Angulo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Museo de Zoología, Centro de Investigación de Biodiversidad y Ecología Tropical, Universidad de Costa Rica, Costa Rica
| |
Collapse
|
2
|
Sadeghi M, Amari A, Asadirad A, Nemati M, Khodadadi A. F1 fraction isolated from Mesobuthus eupeus scorpion venom induces macrophage polarization toward M1 phenotype and exerts anti-tumoral effects on the CT26 tumor cell line. Int Immunopharmacol 2024; 132:111960. [PMID: 38554440 DOI: 10.1016/j.intimp.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Scorpion venoms identified as agents with anti-tumor and anti-angiogenic features. Tumor microenvironment (TME) plays a pivotal role in the process of tumorigenesis, tumor development, and polarization of M2 phenotype tumor associated macrophages (TAMs). M2 polarized cells are associated with tumor growth, invasion, and metastasis. The fractionation process was performed by gel filtration chromatography on a Sephadex G50 column. To elucidate whether scorpion venom can alter macrophage polarization, we treated interleukin (IL)-4-polarized M2 cells with isolated fractions from Mesobuthus eupeus. Next, we evaluated the cytokine production and specific markers expression for M2 and M1 phenotype using enzyme linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR), respectively. The phagocytic capacity of macrophages was also assessed. In addition, the migration assay and MTT analysis were performed to investigate the effects of reprogrammed macrophages on the CT-26 colon cancer cells. The results indicated that F1 fraction of venom significantly upregulated the levels and expression of M1-associated cytokines and markers, including tumor necrosis factor-alpha (TNF-α) (p < 0.001), IL-1 (p < 0.01), interferon regulatory factor 5 (IRF5) (p < 0.0001), induced nitric oxide synthase (iNOS) (p < 0.0001), and CD86 (p < 0.0001), and downregulated M2-related markers, including transforming growth factor-beta (TGF-β) (p < 0.05), IL-10 (p < 0.05), Fizz1 (p < 0.0001), arginase-1 (Arg-1) (p < 0.0001), and CD206 (p < 0.001). The macrophage phagocytic capacity was enhanced after treatment with F1 fraction (p < 0.01). Moreover, incubation of CT-26 cell line with conditioned media of F1-treated macrophages suppressed migration (p < 0.0001) and proliferation (p < 0.01) of tumor cells. In conclusion, our findings demonstrated the potential of Mesobuthus eupeus venom in M2-to-M1 macrophage polarization as a promising therapeutic approach against proliferation and metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Amari
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Nemati
- Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Wiezel GA, Oliveira IS, Reis MB, Ferreira IG, Cordeiro KR, Bordon KCF, Arantes EC. The complex repertoire of Tityus spp. venoms: Advances on their composition and pharmacological potential of their toxins. Biochimie 2024; 220:144-166. [PMID: 38176606 DOI: 10.1016/j.biochi.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Animal venoms are a rich and complex source of components, including peptides (such as neurotoxins, anionic peptides and hypotensins), lipids, proteins (such as proteases, hyaluronidases and phospholipases) and inorganic compounds, which affect all biological systems of the envenoming victim. Their action may result in a wide range of clinical manifestations, including tachy/bradycardia, hyper/hypotension, disorders in blood coagulation, pain, edema, inflammation, fever, muscle paralysis, coma and even death. Scorpions are one of the most studied venomous animals in the world and interesting bioactive molecules have been isolated and identified from their venoms over the years. Tityus spp. are among the scorpions with high number of accidents reported in the Americas, especially in Brazil. Their venoms have demonstrated interesting results in the search for novel agents with antimicrobial, anti-viral, anti-parasitic, hypotensive, immunomodulation, anti-insect, antitumor and/or antinociceptive activities. Furthermore, other recent activities still under investigation include drug delivery action, design of anti-epileptic drugs, investigation of sodium channel function, treatment of erectile disfunction and priapism, improvement of scorpion antivenom and chelating molecules activity. In this scenario, this paper focuses on reviewing advances on Tityus venom components mainly through the modern omics technologies as well as addressing potential therapeutic agents from their venoms and highlighting this abundant source of pharmacologically active molecules with biotechnological application.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søtolfts Plads, Building 239 Room 006, Kongens Lyngby, 2800, Denmark.
| | - Mouzarllem B Reis
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Kalynka R Cordeiro
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Karla C F Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Biological Effects of Animal Venoms on the Human Immune System. Toxins (Basel) 2022; 14:toxins14050344. [PMID: 35622591 PMCID: PMC9143185 DOI: 10.3390/toxins14050344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Venoms are products of specialized glands and serve many living organisms to immobilize and kill prey, start digestive processes and act as a defense mechanism. Venoms affect different cells, cellular structures and tissues, such as skin, nervous, hematological, digestive, excretory and immune systems, as well as the heart, among other structures. Components of both the innate and adaptive immune systems can be stimulated or suppressed. Studying the effects on the cells and molecules produced by the immune system has been useful in many biomedical fields. The effects of venoms can be the basis for research and development of therapeutic protocols useful in the modulation of the immunological system, including different autoimmune diseases. This review focuses on the understanding of biological effects of diverse venom on the human immune system and how some of their components can be useful for the study and development of immunomodulatory drugs.
Collapse
|
5
|
Scorpion venom exhibits adjuvant effect by eliciting HBsAg-specific Th1 immunity through neuro-endocrine interactions. Mol Immunol 2022; 147:136-146. [PMID: 35567818 DOI: 10.1016/j.molimm.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/03/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
The Hottentotta rugiscutis scorpion venom (Hrv) contains neurotoxins, which elicit a strong innate immune response through the activation of the Hypothalamus-pituitary-adrenal axis, which could improve the quality of adaptive immunity. Hence, the Hrv was used as an adjuvant for the Hepatitis-B virus surface antigen (HBsAg) and assessed its ability in the activation of innate (NGF, CORT, cellularity, NO) and adaptive (IgM, IgG, IgG1/IgG2a/IgG2b/IgG3, Th1/Th2 cytokines, avidity) immunity. Here, the Hrv and HBsAg were given in the mixed form (HBsAg-Hrv) as well as in a separate form (HBsAg+Hrv). The NGF levels in plasma/spleen and CORT in plasma were found to be elevated optimally at 5 h and 6 h post-Hrv injection, respectively. Further studies showed that CORT and NGF levels were also highly upregulated in the HBsAg-Hrv group. The HBsAg-specific IgM titer was found to be increased in the HBsAg+Hrv group and total IgG was relatively similar among alum and Hrv-test groups, but IgG2a/IgG2b/IgG3 levels were higher along with IL-1β in HBsAg-Hrv groups. The study showed that the venom from H. rugiscutis acts as a vaccine adjuvant for HBsAg to develop strong antigen-specific Th1 immunity. The Hrv also enhances the antibody-avidity which may improve the neutralizing ability of antibodies with systemic infectious agents. The study also elucidated that the venom acts by neuroendocrine-immune mechanism and majorly impacts splenocytes through NGF and corticosterone.
Collapse
|
6
|
Neosaxitoxin Inhibits the Expression of Inflammation Markers of the M1 Phenotype in Macrophages. Mar Drugs 2020; 18:md18060283. [PMID: 32471037 PMCID: PMC7345530 DOI: 10.3390/md18060283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Neosaxitoxin (NeoSTX) has been used as a local anesthetic, but its anti-inflammatory effects have not been well defined. In the present study, we investigate the effects of NeoSTX on lipopolysaccharide (LPS)-activated macrophages. (2) Methods: Raw 264.7 and equine PBMC cells were incubated with or without 100 ng/mL LPS in the presence or absence of NeoSTX (1µM). The expression of inflammatory mediators was assessed: nitric oxide (NO) content using the Griess assay, TNF-α content using the ELISA assay, and mRNA of inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) using a real-time polymerase chain reaction. (3) Results: NeoSTX (1 μM) significantly inhibited the release of NO, TNF-α, and expression of iNOS, IL-1β, and TNF-α in LPS-activated macrophages of both species studied. Furthermore, our study shows that the LPS-induced release of inflammatory mediators was suppressed by NeoSTX. Additionally, NeoSTX deactivated polarized macrophages to M1 by LPS without compromising its polarization towards M2. (4) Conclusions: NeoSTX inhibits LPS-induced release of inflammatory mediators from macrophages, and these effects may be mediated by the blockade of voltage-gated sodium channels (VGSC).
Collapse
|
7
|
Li M, Shang YX. Neurokinin-1 receptor antagonist decreases [Ca 2+]i in airway smooth muscle cells by reducing the reverse-mode Na +/Ca 2+ exchanger current. Peptides 2019; 115:69-74. [PMID: 30946859 DOI: 10.1016/j.peptides.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 11/15/2022]
Abstract
Airway smooth muscle (ASM) is involved in asthma airway inflammation. The aim of this study was to evaluate the effect of substance P and neurokinin-1 receptor (NK-1R) antagonist on intracellular calcium concentration ([Ca2+]i) in airway smooth muscle cells (ASMCs), ASMC contraction, and the effect on reverse-mode Na+-Ca2+ exchanger (NCX) currents in ASMCs. In our study, primary rat ASMCs were cultured. ASMCs were identified by immunofluorescence. [Ca2+]i variations were measured by fluorescence microscopy. Cell shortening (%) and relaxation (%) were analyzed with phase-contrast microscopy. Patch clamp techniques were used to assess NCX currents in ASMCs. We found that substance P increased, and NK-1R antagonist decreased [Ca2+]i in ASMCs. Substance P induced ASMCs contraction, and NK-1R antagonist can make ASMC relax. Patch clamp techniques were implemented to analyze NCX currents in ASMCs. Substance P increased reverse-mode NCX currents in ASMCs but the current density was lower than the one treated with acetylcholine (Ach). NK-1R antagonist reduced reverse-mode NCX current activity in ASMCs, and the current density was similar to the one treated with the reversed NCX inhibitor. So, we concluded that substance P increased [Ca2+]i in ASMCs by promoting the reverse-mode NCX current and stimulating ASMCs, whereas NK-1R antagonist decreased [Ca2+]i in ASMCs by decreasing the reverse-mode NCX current to make ASMCs relax.
Collapse
Affiliation(s)
- Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yun-Xiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
8
|
Bitencourt MAO, Torres-Rêgo M, de Souza Lima MCJ, Furtado AA, de Azevedo EP, do Egito EST, da Silva-Júnior AA, Zucolotto SM, Fernandes-Pedrosa MDF. Protective effect of aqueous extract, fractions and phenolic compounds of Hancornia speciosa fruits on the inflammatory damage in the lungs of mice induced by Tityus serrulatus envenomation. Toxicon 2019; 164:1-9. [PMID: 30902683 DOI: 10.1016/j.toxicon.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 01/13/2023]
Abstract
Scorpion envenomation has been considered a public health issue around the world. Tityus serrulatus represents a specie of major medical importance in Brazil due to mortality rates of approximately 1% among children and elderly populations. The aim of this work was to evaluate the in vivo anti-inflammatory potential of aqueous extract from Hancornia speciosa fruits, its fractions and its phenolic compounds against T. serrulatus envenomation. After receiving the T. serrulatus venom (TsV, 0.8 mg/kg) intraperitoneally, the animals were treated intravenously with the aqueous extract (20, 30 and 40 mg/kg), the arachnid antivenom (50 μL/animal), the dichloromethane, ethyl acetate and n-butanol fractions (20 mg/kg) as well as rutin and chlorogenic acid (2, 2.5 and 5 mg/kg). The treatment with the aqueous extract, fractions and phenolic compounds decreased the migration of leukocytes to the peritoneal cavity and reduced the levels of IL-1β, IL-6 and IL-12. Moreover, the pulmonary histopathologic analysis showed a reduction in both interstitial and alveolar edema, as well as in the leukocytes infiltration and vascular ectasia in the mice's lungs, which evidences a protective effect attributed to H. speciosa. This is the first study that demonstrates the inhibitory potential of the aqueous extract from H. speciosa fruits against inflammation induced by TsV. These findings suggest that the bioactive compounds from the aqueous extract, especially chlorogenic acid and rutin, are responsible for the reported anti-inflammatory activity of H. speciosa.
Collapse
Affiliation(s)
- Mariana Angélica Oliveira Bitencourt
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil; Graduate Program of Biotechnology, Potiguar University (UnP), Avenida Senador Salgado Filho, 1610, Lagoa Nova, Natal, 59056-000, Brazil.
| | - Manoela Torres-Rêgo
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Maíra Conceição Jerônimo de Souza Lima
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil; Department of Veterinary Medicine, Potiguar University (UnP), Avenida Senador Salgado Filho, 1610, Lagoa Nova, Natal, 59056-000, Brazil.
| | - Allanny Alves Furtado
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Eduardo Pereira de Azevedo
- Graduate Program of Biotechnology, Potiguar University (UnP), Avenida Senador Salgado Filho, 1610, Lagoa Nova, Natal, 59056-000, Brazil.
| | - Eryvaldo Sócrates Tabosa do Egito
- Laboratory of Dispersed Systems (LaSiD), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, 59012-570, Natal, Brazil.
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Silvana Maria Zucolotto
- Laboratory of Pharmacognosy (PNBio), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil.
| |
Collapse
|
9
|
Khemili D, Valenzuela C, Laraba-Djebari F, Hammoudi-Triki D. Differential effect of Androctonus australis hector venom components on macrophage K V channels: electrophysiological characterization. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:1-13. [PMID: 30006779 DOI: 10.1007/s00249-018-1323-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
Neurotoxins of scorpion venoms modulate ion channels. Voltage-gated potassium (KV) channels regulate the membrane potential and are involved in the activation and proliferation of immune cells. Macrophages are key components of the inflammatory response induced by scorpion venom. The present study was undertaken to investigate the effect of Androctonus australis hector (Aah) venom on KV channels in murine resident peritoneal macrophages. The cytotoxicity of the venom was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) -based assay and electrophysiological recordings were performed using the whole-cell patch clamp technique. High doses of Aah venom (50, 125, 250 and 500 µg/ml) significantly decreased cell viability, while concentrations of 0.1-25 µg/ml were not cytotoxic towards peritoneal macrophages. Electrophysiological data revealed a differential block of KV current between resting and LPS-activated macrophages. Aah venom significantly reduced KV current amplitude by 62.5 ± 4.78% (n = 8, p < 0.05), reduced the use-dependent decay of the current, decreased the degree of inactivation and decelerated the inactivation process of KV current in LPS-activated macrophages. Unlike cloned KV1.5 channels, Aah venom exerted a similar blocking effect on KV1.3 compared to KV current in LPS-activated macrophages, along with a hyperpolarizing shift in the voltage dependence of KV1.3 inactivation, indicating a direct mechanism of current inhibition by targeting KV1.3 subunits. The obtained results, demonstrating that Aah venom differentially targets KV channels in macrophages, suggest differential outcomes for their inhibitions, and that further investigations of scorpion venom immunomodulatory potential are required.
Collapse
Affiliation(s)
- Dalila Khemili
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Fatima Laraba-Djebari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria.
| | - Djelila Hammoudi-Triki
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| |
Collapse
|
10
|
Corzo G, Espino-Solis GP. Selected scorpion toxin exposures induce cytokine release in human peripheral blood mononuclear cells. Toxicon 2017; 127:56-62. [PMID: 28088477 DOI: 10.1016/j.toxicon.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023]
Abstract
A cytokine screening on human peripheral blood mononuclear cells (PBMCs) stimulated with selected scorpion toxins (ScTx's) was performed in order to evaluate their effect on human immune cells. The ScTx's chosen for this report were three typical buthid scorpion venom peptides, one with lethal effects on mammals Centruroides suffussus suffusus toxin II (CssII), another, with lethal effects on insects and crustaceans Centruroides noxius toxin 5 (Cn5), and one more without lethal effects Tityus discrepans toxin (Discrepin). A Luminex multiplex analysis was performed in order to determine the amounts chemokines and cytokines IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12-p40, IL-13, interferon alpha (IFN-α), interferon gamma (IFN-γ), tumor necrosis factor alpha TNF-α, and interferon-inducible protein-10 (IP-10) secreted from human PBMCs exposed to these toxins. Although, the ScTx Cn5 is not lethal for mammals, it was able to induce the secretion of cytokines IL-1β, IL-6, and TNF-α, IL-10 and IP-10 in comparison to the lethal CssII, which was able to induce only IP-10 secretion. Discrepin also was able to induce only IP-10. Interestingly, only low amounts of interferons α and β were induced in the presence of the ScTx's assayed. In a synergic experiment, the combination of Discrepin and Cn5 displayed considerable reverse effects on induction of IL-1β, IL-6, IL-10 and TNF-α, but they had a slight synergic effect on IP-10 cytokine production in comparison with the single effect obtained with the Cn5 alone. Thus, the results obtained suggest that the profile of secreted cytokines promoted by ScTx Cn5 is highly related with a cytokine storm event, and also it suggests that the mammalian lethal neurotoxins are not solely responsible of the scorpion envenomation symptomatology.
Collapse
Affiliation(s)
- Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | | |
Collapse
|
11
|
He Y, Zou X, Li X, Chen J, Jin L, Zhang F, Yu B, Cao Z. Activation of sodium channels by α-scorpion toxin, BmK NT1, produced neurotoxicity in cerebellar granule cells: an association with intracellular Ca 2+ overloading. Arch Toxicol 2016; 91:935-948. [PMID: 27318804 DOI: 10.1007/s00204-016-1755-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the action potential generation in excitable cells including neurons and involved in many physiological and pathological processes. Scorpion toxins are invaluable tools to explore the structure and function of ion channels. BmK NT1, a scorpion toxin from Buthus martensii Karsch, stimulates sodium influx in cerebellar granule cells (CGCs). In this study, we characterized the mode of action of BmK NT1 on the VGSCs and explored the cellular response in CGC cultures. BmK NT1 delayed the fast inactivation of VGSCs, increased the Na+ currents, and shifted the steady-state activation and inactivation to more hyperpolarized membrane potential, which was similar to the mode of action of α-scorpion toxins. BmK NT1 stimulated neuron death (EC50 = 0.68 µM) and produced massive intracellular Ca2+ overloading (EC50 = 0.98 µM). TTX abrogated these responses, suggesting that both responses were subsequent to the activation of VGSCs. The Ca2+ response of BmK NT1 was primary through extracellular Ca2+ influx since reducing the extracellular Ca2+ concentration suppressed the Ca2+ response. Further pharmacological evaluation demonstrated that BmK NT1-induced Ca2+ influx and neurotoxicity were partially blocked either by MK-801, an NMDA receptor blocker, or by KB-R7943, an inhibitor of Na+/Ca2+ exchangers. Nifedipine, an L-type Ca2+ channel inhibitor, slightly suppressed both Ca2+ response and neurotoxicity. A combination of these three inhibitors abrogated both responses. Considered together, these data ambiguously demonstrated that activation of VGSCs by an α-scorpion toxin was sufficient to produce neurotoxicity which was associated with intracellular Ca2+ overloading through both NMDA receptor- and Na+/Ca2+ exchanger-mediated Ca2+ influx.
Collapse
Affiliation(s)
- Yuwei He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Xichun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,School of Biological Pharmaceutics, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China. .,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China. .,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Olvera F, Rosales A, Olvera A, Diaz P, Sevcik C, Salazar V, Alagón A, Hernández H, D'Suze G. An efficient approach to clone and express active Neopladine 2, an anticancer peptide from Tityus discrepans scorpion venom. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Pucca MB, Peigneur S, Cologna CT, Cerni FA, Zoccal KF, Bordon KDCF, Faccioli LH, Tytgat J, Arantes EC. Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages. Biochimie 2015; 115:8-16. [PMID: 25906692 DOI: 10.1016/j.biochi.2015.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) and Na(+) channels, which are expressed in many cells such as macrophages. Macrophages are the first line of defense invasion and they participate in the inflammatory response of Ts envenoming. However, little is known about the effect of Ts toxins on macrophage activation. This study investigated the effect of Ts5 toxin on different sodium channels as well as its role on the macrophage immunomodulation. The electrophysiological assays showed that Ts5 inhibits the rapid inactivation of the mammalian sodium channels Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6 and Nav1.7. Interestingly, Ts5 also inhibits the inactivation of the insect Drosophila melanogaster sodium channel (DmNav1), and it is therefore classified as the first Ts α-like toxin. The immunological experiments on macrophages reveal that Ts5 is a pro-inflammatory toxin inducing the cytokine production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. On the basis of recent literature, our study also stresses a possible mechanism responsible for venom-associated molecular patterns (VAMPs) internalization and macrophage activation and moreover we suggest two main pathways of VAMPs signaling: direct and indirect. This work provides useful insights for a better understanding of the involvement of VAMPs in macrophage modulation.
Collapse
Affiliation(s)
- Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Camila T Cologna
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina F Zoccal
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla de C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucia H Faccioli
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Díaz P, D'Suze G, Sevcik C. Ability of horse anti-Tityus discrepans F(ab')2 ELISA assay to recognize Tityus discrepans venom toxins. Toxicon 2014; 88:88-92. [PMID: 24932739 DOI: 10.1016/j.toxicon.2014.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 11/25/2022]
Abstract
Anti-Tityus discrepans F(ab')2 ELISA recognition of T. discrepans toxins was measured with regression analysis and its slope called ELISA recognition value (ERv). Fractions containing toxins affecting mammal macrophages or Na(+)-channels have Ervs >19. Toxins affecting potassium channels or insect NaV channels have ERvs <10. Fractions including curarizing or antineoplasic peptides had ERvs <1. Erv increases in proportion to mammalian toxin toxicity rather than to toxin molecular mass.
Collapse
Affiliation(s)
- P Díaz
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, 1020A Caracas, Miranda, Venezuela
| | - G D'Suze
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, 1020A Caracas, Miranda, Venezuela.
| | - C Sevcik
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, 1020A Caracas, Miranda, Venezuela
| |
Collapse
|