1
|
Flores-Pérez AJ, Loya-López S, Ávalos-Fuentes A, Calderon-Rivera A, Damo E, Lazcano-Pérez F, Khanna R, Florán-Garduño B, Sánchez-Rodríguez J. Effect of Crude Extract from the Sea Anemone Bunodeopsis globulifera on Voltage-Gated Ion Channels from Central and Peripheral Murine Nervous Systems. Pharmaceuticals (Basel) 2024; 17:1006. [PMID: 39204111 PMCID: PMC11357587 DOI: 10.3390/ph17081006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Sea anemones are an important source of bioactive compounds with potential pharmacological applications. Their toxins are produced and stored in organelles called nematocysts and act on specific targets, including voltage-gated ion channels. To date, sea anemone toxins have demonstrated effects on voltage-gated sodium and potassium channels, facilitating investigations into the structure and function of these proteins. In this study, we evaluated the effect of Bunodeopsis globulifera sea anemone crude extract, and of a low molecular weight fraction, on voltage-gated sodium and calcium channels within the murine nervous system. Notably, the crude extract led to a significant reduction in total sodium current, while also triggering calcium-dependent glutamate release. Furthermore, the low molecular weight fraction, in particular, enhanced total calcium currents and current density. These findings underscore the existence of sea anemone toxins with diverse mechanisms of action beyond those previously documented.
Collapse
Affiliation(s)
- Aleida Jeannette Flores-Pérez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico;
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes s/n, Domicilio Conocido, Puerto Morelos 77580, Mexico;
| | - Santiago Loya-López
- Department of Pharmacology and Therapeutics, University of Florida, 1149 Newell Drive, Gainesville, FL 32610, USA; (S.L.-L.); (A.C.-R.); (R.K.)
| | - Arturo Ávalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Alcaldía Gustavo A. Madero, Mexico City 07360, Mexico; (A.Á.-F.); (B.F.-G.)
| | - Aida Calderon-Rivera
- Department of Pharmacology and Therapeutics, University of Florida, 1149 Newell Drive, Gainesville, FL 32610, USA; (S.L.-L.); (A.C.-R.); (R.K.)
| | - Elisa Damo
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA;
| | - Fernando Lazcano-Pérez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes s/n, Domicilio Conocido, Puerto Morelos 77580, Mexico;
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, University of Florida, 1149 Newell Drive, Gainesville, FL 32610, USA; (S.L.-L.); (A.C.-R.); (R.K.)
| | - Benjamin Florán-Garduño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Alcaldía Gustavo A. Madero, Mexico City 07360, Mexico; (A.Á.-F.); (B.F.-G.)
| | - Judith Sánchez-Rodríguez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes s/n, Domicilio Conocido, Puerto Morelos 77580, Mexico;
| |
Collapse
|
2
|
Colom-Casasnovas A, Garay E, Cisneros-Mejorado A, Aguilar MB, Lazcano-Pérez F, Arellano RO, Sánchez-Rodríguez J. Sea anemone Bartholomea annulata venom inhibits voltage-gated Na+ channels and activates GABAA receptors from mammals. Sci Rep 2022; 12:5352. [PMID: 35354863 PMCID: PMC8967859 DOI: 10.1038/s41598-022-09339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Toxin production in nematocysts by Cnidaria phylum represents an important source of bioactive compounds. Using electrophysiology and, heterologous expression of mammalian ion channels in the Xenopus oocyte membrane, we identified two main effects produced by the sea anemone Bartholomea annulata venom. Nematocysts isolation and controlled discharge of their content, revealed that venom had potent effects on both voltage-dependent Na+ (Nav) channels and GABA type A channel receptors (GABAAR), two essential proteins in central nervous system signaling. Unlike many others sea anemone toxins, which slow the inactivation rate of Nav channels, B. annulata venom potently inhibited the neuronal action potential and the Na+ currents generated by distinct Nav channels opening, including human TTX-sensitive (hNav1.6) and TTX-insensitive Nav channels (hNav1.5). A second effect of B. annulata venom was an agonistic action on GABAAR that activated distinct receptors conformed by either α1β2γ2, α3β2γ1 or, ρ1 homomeric receptors. Since GABA was detected in venom samples by ELISA assay at low nanomolar range, it was excluded that GABA from nematocysts directly activated the GABAARs. This revealed that substances in B. annulata nematocysts generated at least two potent and novel effects on mammalian ion channels that are crucial for nervous system signaling.
Collapse
|
3
|
A Novel Phospholipase A2 Isolated from Palythoa caribaeorum Possesses Neurotoxic Activity. Toxins (Basel) 2019; 11:toxins11020089. [PMID: 30717279 PMCID: PMC6409743 DOI: 10.3390/toxins11020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 11/16/2022] Open
Abstract
Zoanthids of the genus Palythoa are distributed worldwide in shallow waters around coral reefs. Like all cnidarians, they possess nematocysts that contain a large diversity of toxins that paralyze their prey. This work was aimed at isolating and functionally characterizing a cnidarian neurotoxic phospholipase named A2-PLTX-Pcb1a for the first time. This phospholipase was isolated from the venomous extract of the zoanthid Palythoa caribaeorum. This enzyme, which is Ca2+-dependent, is a 149 amino acid residue protein. The analysis of the A2-PLTX-Pcb1a sequence showed neurotoxic domain similitude with other neurotoxic sPLA2´s, but a different catalytic histidine domain. This is remarkable, since A2-PLTX-Pcb1a displays properties like those of other known PLA2 enzymes.
Collapse
|
4
|
Liao Q, Li S, Siu SWI, Morlighem JÉRL, Wong CTT, Wang X, Rádis-Baptista G, Lee SMY. Novel neurotoxic peptides from Protopalythoa variabilis virtually interact with voltage-gated sodium channel and display anti-epilepsy and neuroprotective activities in zebrafish. Arch Toxicol 2018; 93:189-206. [DOI: 10.1007/s00204-018-2334-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
|
5
|
Cnidarian peptide neurotoxins: a new source of various ion channel modulators or blockers against central nervous systems disease. Drug Discov Today 2018; 24:189-197. [PMID: 30165198 DOI: 10.1016/j.drudis.2018.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/13/2018] [Accepted: 08/10/2018] [Indexed: 01/17/2023]
Abstract
Cnidaria provide the largest source of bioactive peptides for new drug development. The venoms contain enzymes, potent pore-forming toxins and neurotoxins. The neurotoxins can immobilize predators rapidly when discharged via modifying sodium-channel-gating or blocking the potassium channel during the repolarization stage. Most cnidarian neurotoxins remain conserved under the strong influence of negative selection. Neuroactive peptides targeting the central nervous system through affinity with ion channels could provide insight leading to drug treatment of neurological diseases, which arise from ion channel dysfunctions. Although marine resources offer thousands of possible peptides, only one peptide derived from Cnidaria: ShK-186, also named dalazatide, has reached the pharmaceutical market. This review focuses on neuroprotective agents derived from cnidarian neurotoxic peptides.
Collapse
|
6
|
Lazcano-Pérez F, Zavala-Moreno A, Rufino-González Y, Ponce-Macotela M, García-Arredondo A, Cuevas-Cruz M, Gómez-Manzo S, Marcial-Quino J, Arreguín-Lozano B, Arreguín-Espinosa R. Hemolytic, anticancer and antigiardial activity of Palythoa caribaeorum venom. J Venom Anim Toxins Incl Trop Dis 2018; 24:12. [PMID: 29692802 PMCID: PMC5905176 DOI: 10.1186/s40409-018-0149-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cnidarian venoms and extracts have shown a broad variety of biological activities including cytotoxic, antibacterial and antitumoral effects. Most of these studied extracts were obtained from sea anemones or jellyfish. The present study aimed to determine the toxic activity and assess the antitumor and antiparasitic potential of Palythoa caribaeorum venom by evaluating its in vitro toxicity on several models including human tumor cell lines and against the parasite Giardia intestinalis. METHODS The presence of cytolysins and vasoconstrictor activity of P. caribaeorum venom were determined by hemolysis, PLA2 and isolated rat aortic ring assays, respectively. The cytotoxic effect was tested on HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma), K562 (human chronic myelogenous leukemia), U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma) and SKLU-1 (human lung adenocarcinoma). An in vivo toxicity assay was performed with crickets and the antiparasitic assay was performed against G. intestinalis at 24 h of incubation. RESULTS P. caribaeorum venom produced hemolytic and PLA2 activity and showed specific cytotoxicity against U251 and SKLU-1 cell lines, with approximately 50% growing inhibition. The venom was toxic to insects and showed activity against G. intestinalis in a dose-dependent manner by possibly altering its membrane osmotic equilibrium. CONCLUSION These results suggest that P. caribaeorum venom contains compounds with potential therapeutic value against microorganisms and cancer.
Collapse
Affiliation(s)
- Fernando Lazcano-Pérez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, C.P. 04510. Apdo, Postal 70250 Mexico City, Mexico
| | - Ariana Zavala-Moreno
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, C.P. 04510. Apdo, Postal 70250 Mexico City, Mexico
| | - Yadira Rufino-González
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 Mexico City, Mexico
| | - Martha Ponce-Macotela
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 Mexico City, Mexico
| | - Alejandro García-Arredondo
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010 Querétaro, Mexico
| | - Miguel Cuevas-Cruz
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, C.P. 04510. Apdo, Postal 70250 Mexico City, Mexico
| | - Saúl Gómez-Manzo
- CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Mexico City, Mexico
| | - Jaime Marcial-Quino
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 Mexico City, Mexico
| | - Barbarín Arreguín-Lozano
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, C.P. 04510. Apdo, Postal 70250 Mexico City, Mexico
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 Mexico City, Mexico
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010 Querétaro, Mexico
- CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Mexico City, Mexico
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 Mexico City, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, C.P. 04510. Apdo, Postal 70250 Mexico City, Mexico
| |
Collapse
|
7
|
Guarnieri MC, de Albuquerque Modesto JC, Pérez CD, Ottaiano TF, Ferreira RDS, Batista FP, de Brito MV, Campos IHMP, Oliva MLV. Zoanthid mucus as new source of useful biologically active proteins. Toxicon 2018; 143:96-107. [PMID: 29360533 DOI: 10.1016/j.toxicon.2018.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
Palythoa caribaeorum is a very common colonial zoanthid in the coastal reefs of Brazil. It is known for its massive production of mucus, which is traditionally used in folk medicine by fishermen in northeastern Brazil. This study identified biologically active compounds in P. caribaerum mucus. Crude mucus was collected during low tides by the manual scraping of colonies; samples were maintained in an ice bath, homogenized, and centrifuged at 16,000 g for 1 h at 4 °C; the supernatant (mucus) was kept at -80 °C until use. The enzymatic (proteolytic and phospholipase A2), inhibitory (metallo, cysteine and serine proteases), and hemagglutinating (human erythrocyte) activities were determined. The results showed high levels of cysteine and metallo proteases, intermediate levels of phosholipase A2, low levels of trypsin, and no elastase and chymotrypsin like activities. The mucus showed potent inhibitory activity on snake venom metalloproteases and cysteine proteinase papain. In addition, it showed agglutinating activity towards O+, B+, and A+ erythrocyte types. The hemostatic results showed that the mucus prolongs the aPTT and PT, and strongly inhibited platelet aggregation induced by arachidonic acid, collagen, epinephrine, ADP, and thrombin. The antimicrobial activity was tested on 15 strains of bacteria and fungi through the radial diffusion assay in agar, and no activity was observed. Compounds in P. caribaeorum mucus were analyzed for the first time in this study, and our results show potential pharmacological activities in these compounds, which are relevant for use in physiopathological investigations. However, the demonstration of these activities indicates caution in the use of crude mucus in folk medicine. Furthermore, the present or absent activities identified in this mucus suggest that the studied P. caribaeorum colonies were in thermal stress conditions at the time of sample collection; these conditions may precede the bleaching process in zoanthids. Hence, the use of mucus as an indicator of this process should be evaluated in the future.
Collapse
Affiliation(s)
- Míriam Camargo Guarnieri
- Department of Zoology, Federal University of Pernambuco, Av. Prof Moraes Rego 1235, CEP 50670-901, Cidade Universitária, Recife, PE, Brazil; Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| | - Jeanne Claíne de Albuquerque Modesto
- Vitória Academic Center, Federal University of Pernambuco, Rua Alto do Reservatório, s/n, CEP 55608-680, Bela Vista, Vitória de Santo Antão, PE, Brazil.
| | - Carlos Daniel Pérez
- Vitória Academic Center, Federal University of Pernambuco, Rua Alto do Reservatório, s/n, CEP 55608-680, Bela Vista, Vitória de Santo Antão, PE, Brazil.
| | - Tatiana Fontes Ottaiano
- Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| | - Rodrigo da Silva Ferreira
- Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| | - Fabrício Pereira Batista
- Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| | - Marlon Vilela de Brito
- Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| | - Ikaro Henrique Mendes Pinto Campos
- Department of Zoology, Federal University of Pernambuco, Av. Prof Moraes Rego 1235, CEP 50670-901, Cidade Universitária, Recife, PE, Brazil.
| | - Maria Luiza Vilela Oliva
- Biochemistry Department, Federal University of São Paulo, Rua Três de maio 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Liao Q, Li S, Siu SWI, Yang B, Huang C, Chan JYW, Morlighem JÉRL, Wong CTT, Rádis-Baptista G, Lee SMY. Novel Kunitz-like Peptides Discovered in the Zoanthid Palythoa caribaeorum through Transcriptome Sequencing. J Proteome Res 2018; 17:891-902. [PMID: 29285938 DOI: 10.1021/acs.jproteome.7b00686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Palythoa caribaeorum (class Anthozoa) is a zoanthid that together jellyfishes, hydra, and sea anemones, which are venomous and predatory, belongs to the Phyllum Cnidaria. The distinguished feature in these marine animals is the cnidocytes in the body tissues, responsible for toxin production and injection that are used majorly for prey capture and defense. With exception for other anthozoans, the toxin cocktails of zoanthids have been scarcely studied and are poorly known. Here, on the basis of the analysis of P. caribaeorum transcriptome, numerous predicted venom-featured polypeptides were identified including allergens, neurotoxins, membrane-active, and Kunitz-like peptides (PcKuz). The three predicted PcKuz isotoxins (1-3) were selected for functional studies. Through computational processing comprising structural phylogenetic analysis, molecular docking, and dynamics simulation, PcKuz3 was shown to be a potential voltage gated potassium-channel inhibitor. PcKuz3 fitted well as new functional Kunitz-type toxins with strong antilocomotor activity as in vivo assessed in zebrafish larvae, with weak inhibitory effect toward proteases, as evaluated in vitro. Notably, PcKuz3 can suppress, at low concentration, the 6-OHDA-induced neurotoxicity on the locomotive behavior of zebrafish, which indicated PcKuz3 may have a neuroprotective effect. Taken together, PcKuz3 figures as a novel neurotoxin structure, which differs from known homologous peptides expressed in sea anemone. Moreover, the novel PcKuz3 provides an insightful hint for biodrug development for prospective neurodegenerative disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean-Étienne R L Morlighem
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará , Fortaleza 60020-181, Brazil
| | | | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará , Fortaleza 60020-181, Brazil
| | | |
Collapse
|
9
|
Domínguez-Pérez D, Rodríguez AA, Osorio H, Azevedo J, Castañeda O, Vasconcelos V, Antunes A. Microcystin-LR Detected in a Low Molecular Weight Fraction from a Crude Extract of Zoanthus sociatus. Toxins (Basel) 2017; 9:E89. [PMID: 28257074 PMCID: PMC5371844 DOI: 10.3390/toxins9030089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Cnidarian constitutes a great source of bioactive compounds. However, research involving peptides from organisms belonging to the order Zoanthidea has received very little attention, contrasting to the numerous studies of the order Actiniaria, from which hundreds of toxic peptides and proteins have been reported. In this work, we performed a mass spectrometry analysis of a low molecular weight (LMW) fraction previously reported as lethal to mice. The low molecular weight (LMW) fraction was obtained by gel filtration of a Zoanthus sociatus (order Zoanthidea) crude extract with a Sephadex G-50, and then analyzed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry (MS) in positive ion reflector mode from m/z 700 to m/z 4000. Afterwards, some of the most intense and representative MS ions were fragmented by MS/MS with no significant results obtained by Protein Pilot protein identification software and the Mascot algorithm search. However, microcystin masses were detected by mass-matching against libraries of non-ribosomal peptide database (NORINE). Subsequent reversed-phase C18 HPLC (in isocratic elution mode) and mass spectrometry analyses corroborated the presence of the cyanotoxin Microcystin-LR (MC-LR). To the best of our knowledge, this finding constitutes the first report of MC-LR in Z. sociatus, and one of the few evidences of such cyanotoxin in cnidarians.
Collapse
Affiliation(s)
- Dany Domínguez-Pérez
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Armando Alexei Rodríguez
- Department of Experimental and Clinical Peptide Chemistry, Hanover Medical School (MHH), Feodor-Lynen-Straße 31, D-30625 Hannover, Germany.
| | - Hugo Osorio
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Joana Azevedo
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Olga Castañeda
- Faculty of Biology, University of La Habana, 25 St 455, CP 10400 La Habana, Cuba.
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
10
|
Huang C, Morlighem JÉR, Zhou H, Lima ÉP, Gomes PB, Cai J, Lou I, Pérez CD, Lee SM, Rádis-Baptista G. The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) Predicts a Basal Repertoire of Toxin-like and Venom-Auxiliary Polypeptides. Genome Biol Evol 2016; 8:3045-3064. [PMID: 27566758 PMCID: PMC5630949 DOI: 10.1093/gbe/evw204] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 12/12/2022] Open
Abstract
Protopalythoa is a zoanthid that, together with thousands of predominantly marine species, such as hydra, jellyfish, and sea anemones, composes the oldest eumetazoan phylum, i.e., the Cnidaria. Some of these species, such as sea wasps and sea anemones, are highly venomous organisms that can produce deadly toxins for preying, for defense or for territorial disputes. Despite the fact that hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, practically nothing is known about the toxin repertoire in zoanthids. Here, based on a transcriptome analysis of the zoanthid Protopalythoa variabilis, numerous predicted polypeptides with canonical venom protein features are identified. These polypeptides comprise putative proteins from different toxin families: neurotoxic peptides, hemostatic and hemorrhagic toxins, membrane-active (pore-forming) proteins, protease inhibitors, mixed-function venom enzymes, and venom auxiliary proteins. The synthesis and functional analysis of two of these predicted toxin products, one related to the ShK/Aurelin family and the other to a recently discovered anthozoan toxin, displayed potent in vivo neurotoxicity that impaired swimming in larval zebrafish. Altogether, the complex array of venom-related transcripts that are identified in P. variabilis, some of which are first reported in Cnidaria, provides novel insight into the toxin distribution among species and might contribute to the understanding of composition and evolution of venom polypeptides in toxiferous animals.
Collapse
Affiliation(s)
- Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jean-Étienne Rl Morlighem
- Northeast Biotechnology Network (RENORBIO), Post-graduation program in Biotechnology, Federal University of Ceará, Fortaleza, Brazil Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, Brazil
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Érica P Lima
- Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Paula B Gomes
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Jing Cai
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| | - Inchio Lou
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| | - Carlos D Pérez
- Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Simon Ming Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
11
|
Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons. Toxins (Basel) 2016; 8:toxins8050135. [PMID: 27164140 PMCID: PMC4885050 DOI: 10.3390/toxins8050135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 12/19/2022] Open
Abstract
The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.
Collapse
|
12
|
de Lera Ruiz M, Kraus RL. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J Med Chem 2015; 58:7093-118. [PMID: 25927480 DOI: 10.1021/jm501981g] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tremendous therapeutic potential of voltage-gated sodium channels (Na(v)s) has been the subject of many studies in the past and is of intense interest today. Na(v)1.7 channels in particular have received much attention recently because of strong genetic validation of their involvement in nociception. Here we summarize the current status of research in the Na(v) field and present the most relevant recent developments with respect to the molecular structure, general physiology, and pharmacology of distinct Na(v) channel subtypes. We discuss Na(v) channel ligands such as small molecules, toxins isolated from animal venoms, and the recently identified Na(v)1.7-selective antibody. Furthermore, we review eight characterized ligand binding sites on the Na(v) channel α subunit. Finally, we examine possible therapeutic applications of Na(v) ligands and provide an update on current clinical studies.
Collapse
Affiliation(s)
- Manuel de Lera Ruiz
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Richard L Kraus
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|
13
|
The voltage-gated sodium channel: a major target of marine neurotoxins. Toxicon 2014; 91:84-95. [PMID: 25305552 DOI: 10.1016/j.toxicon.2014.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/18/2014] [Accepted: 09/30/2014] [Indexed: 12/16/2022]
Abstract
Voltage-gated sodium channels (Nav) are key components for nerve excitability. They initiate and propagate the action potential in excitable cells, throughout the central and peripheral nervous system, thus enabling a variety of physiological functions to be achieved. The rising phase of the action potential is driven by the opening of Nav channels which activate rapidly and carry Na(+) ions in the intracellular medium, and ends with the Na(+) current inactivation. The biophysical properties of these channels have been elucidated, through the use of pharmacological agents that disrupt the molecular mechanism of the channel functioning. Among them, marine toxins produced by venomous animals or microorganisms have been crucial to map the different allosteric binding sites of the channels, understand their mode of action and represent an emerging source of therapeutic agents to alleviate or cure Na(+) channels-linked human diseases. In this article, we review recent discoveries on the molecular and biophysical properties of the Na(+) channel as a target for marine neurotoxins, and present the ongoing developments of pharmacological agents as therapeutic tools.
Collapse
|