1
|
Muller JAI, Bourke LA, Campbell SID, Cardoso FC. Venom peptides regulating Ca 2+ homeostasis: neuroprotective potential. Trends Pharmacol Sci 2025; 46:407-421. [PMID: 40240234 DOI: 10.1016/j.tips.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Venom peptides specialized in modulating intracellular calcium ([Ca2+]i) offer a treasure trove of pharmacological properties to regulate aberrant Ca2+ homeostasis in disease. Combined with emerging advances across peptide optimization, disease models, and functional bioassays, these venom peptides could unlock new therapies restoring Ca2+ homeostasis. In this opinion, we explore the pharmacology of venom peptides modulating [Ca2+]i signaling along with recent breakthroughs propelling venom peptide-based drug discovery. We predict a transformative era in therapeutic development harnessing venom peptides targeting dysfunctional Ca2+ signaling in intractable conditions such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Jessica A I Muller
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lachlan A Bourke
- School of the Environment, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Sam I D Campbell
- School of the Environment, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| |
Collapse
|
2
|
Zhou T, Li H, Zhang Q, Cheng S, Zhang Q, Yao Y, Dong K, Xu Z, Shu W, Zhang J, Wang H. Integrating Bioinformatics and Experimental Validation to Identify Mitochondrial Permeability Transition-Driven Necrosis-Related lncRNAs that can Serve as Prognostic Biomarkers and Therapeutic Targets in Endometrial Carcinoma. Reprod Sci 2025; 32:876-894. [PMID: 39352634 PMCID: PMC11870901 DOI: 10.1007/s43032-024-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/06/2024] [Indexed: 03/03/2025]
Abstract
Endometrial carcinoma (EC) is a common malignant tumor in women with high mortality and relapse rates. Mitochondrial permeability transition (MPT)-driven necrosis is a novel form of programmed cell death. The MPT-driven necrosis related lncRNAs (MRLs) involved in EC development remain unclear. We aimed to predict the outcomes of patients with EC by constructing a novel prognostic model based on MRLs and explore potential molecular functions. A risk prognostic model was developed utilizing multi-Cox regression in conjunction with the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm, which was based on MRLs. The predictive efficacy of the model was evaluated through receiver operating characteristic (ROC) curve analysis, as well as nomogram and concordance index (C-index) assessments. Patients were categorized into high- and low-risk groups based on their median risk scores. Notably, the high-risk group exhibited significantly poorer overall survival (OS) outcomes. Gene ontology (GO) and Gene set enrichment analysis (GSEA) demonstrated that Hedgehog and cell cycle pathways were enriched in the high-risk group. Tumor Immune Dysfunction and Exclusion (TIDE) displayed that patients in the high-risk group showed a high likelihood of immune evasion and less effective immunotherapy. A significant disparity in immune function was also observed between two groups. Based on the nine-MRLs, drug sensitivity analysis identified several anticancer drugs with potential efficacy in prognosis. Meanwhile, the results demonstrated that OGFRP1 plays a carcinogenic role by affecting mitochondrial membrane permeability in EC. Therefore, the risk model constructed by nine MRLs could be used to predict the clinical outcomes and therapeutic responses in patients with EC effectively.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zheng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, Hubei, China.
| |
Collapse
|
3
|
Plenge-Tellechea LF, Meléndez-Martínez D, Rivas-Valles CE, Gatica-Colima A, Cruz-Pérez MS, Sierra-Fonseca JA. Damage to the sarcoplasmic reticulum by venom of the Mexican black-tailed rattlesnake ( Crotalus molossus nigrescens): inhibition of the Ca 2+-ATPase and membrane lipid disruption. Drug Chem Toxicol 2025:1-9. [PMID: 39925172 DOI: 10.1080/01480545.2025.2463369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Snakebite envenomation is a public health problem in many areas in the world and is a significant cause of disability and death. Crotalid venoms consist of a cocktail of peptides and enzymes that can cause myonecrotoxic lesions, which are associated with irreversible loss of muscle tissue. The sarcoplasmic reticulum Ca2+-ATPase (SERCA) is a transmembrane protein with a critical role in maintaining cellular Ca2+ homeostasis, which is central in facilitating skeletal and cardiac muscle contraction/relaxation. Crotalid venom-induced myotoxicity has been linked to alterations in the intracellular levels of Ca2+. However, the specific mechanisms, including SERCA's involvement, are poorly understood. Thus, we investigated the in vitro toxic effect of crotalid venom on the enzymatic activity of SERCA, using venom of the Mexican black-tailed rattlesnake, Crotalus molossus nigrescens, (vCmn), and SERCA-enriched sarcoplasmic reticulum (SR) microsomes from rabbit skeletal muscle as experimental models. Enzymatic assays revealed significant vCmn-induced decreases in SERCA activity in a time- and dose-dependent manner. Thin layer chromatography and phospholipid hydrolysis measurements showed significant SR membrane damage. The results suggest that vCmn affects SERCA functionality and compromises the integrity of the SR membrane, both of which are critical for skeletal muscle function and could thus be key mediators of vCmn-induced myotoxicity.
Collapse
Affiliation(s)
- Luis Fernando Plenge-Tellechea
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - David Meléndez-Martínez
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - César Emmanuel Rivas-Valles
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Ana Gatica-Colima
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Martha Sandra Cruz-Pérez
- Herpetario de la Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México
| | - Jorge A Sierra-Fonseca
- Science Department, College of Arts and Sciences, Chatham University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Bialves TS, Bastos LL, Parra JAA, Moysés MN, Marques E, de Castro Pimenta AM, Quintela FM, Mariano DCB, Carvalho FC, de Melo-Minardi RC, Boyle RT. Interaction of DisBa01 peptide from Bothrops alternatus venom with BRAF melanoma receptors: Modeling and molecular docking. Int J Biol Macromol 2024; 274:133283. [PMID: 38909731 DOI: 10.1016/j.ijbiomac.2024.133283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Metastatic melanoma is highly aggressive and challenging, often leading to a grim prognosis. Its progression is swift, especially when mutations like BRAFV600E continuously activate pathways vital for cell growth and survival. Although several treatments target this mutation, resistance typically emerges over time. In recent decades, research has underscored the potential of snake venoms and peptides as bioactive substances for innovative drugs, including anti-coagulants, anti-microbial, and anti-cancer agents. Leveraging this knowledge, we propose employing a bioinformatics simulation approach to: a) Predict how well a peptide (DisBa01) from Bothrops alternatus snake venom binds to the melanoma receptor BRAFV600E via Molecular Docking. b) Identify the specific peptide binding sites on receptors and analyze their proximity to active receptor sites. c) Evaluate the behavior of resulting complexes through molecular dynamics simulations. d) Assess whether this peptide qualifies as a candidate for anti-melanoma therapy. Our findings reveal that DisBa01 enhances stability in the BRAFV600E melanoma receptor structure by binding to its RGD motif, an interaction absent in the BRAF WT model. Consequently, both docking and molecular dynamics simulations suggest that DisBa01 shows promise as a BRAFV600E inhibitor.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Graduate Program in Physiological Sciences (PPGCF), Federal University of Rio Grande - FURG, Av. Italy, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Luana Luiza Bastos
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - John Alexanders Amaya Parra
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maurício Nogueira Moysés
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edleusa Marques
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano Monteiro de Castro Pimenta
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Marques Quintela
- Instituto Nacional de Pesquisas do Pantanal- Museu Paraense Emílio Goeldi, Av. Magalhães Barata, 376, Belém, Pará, Brazil
| | - Diego César Batista Mariano
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Chaves Carvalho
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel C de Melo-Minardi
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Tew Boyle
- Graduate Program in Physiological Sciences (PPGCF), Federal University of Rio Grande - FURG, Av. Italy, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Marinho AD, Lucena da Silva E, Jullyanne de Sousa Portilho A, Lacerda Brasil de Oliveira L, Cintra Austregésilo Bezerra E, Maria Dias Nogueira B, Leitão-Araújo M, Lúcia Machado-Alves M, Correa Neto C, Seabra Ferreira R, de Fátima Aquino Moreira-Nunes C, Elisabete Amaral de Moraes M, Jorge RJB, Montenegro RC. Three snake venoms from Bothrops genus induced apoptosis and cell cycle arrest in K562 human leukemic cell line. Toxicon 2024; 238:107547. [PMID: 38065258 DOI: 10.1016/j.toxicon.2023.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
Cancer is indisputably one of the leading causes of death worldwide. Snake venoms are a potential source of bioactive compounds, complex mixtures constituted mainly of proteins and peptides with several pharmacological possibilities, including the potential to inhibit tumoral cell growth. In the present study, it was evaluated the antitumor effect of crude venom of Bothrops erythromelas (BeV), Bothrops jararaca (from Southern and Southeastern- BjsV and BjsdV, respectively) and Bothrops alternatus (BaV) in in vitro Chronic myeloid leukemia (CML) cancer cell line model. After 24 h of cell exposure to 10 and 50 μg/mL, BjsV, BjsdV, and BaV exerted a decrease in cell viability in both concentrations. BeV was not cytotoxic and, therefore wasn't chosen for further mechanism of action investigation. Furthermore, morphological alterations show modification typical of apoptosis. Also, was observes a significant cell cycle arrest in the S phase by BjsdV and BaV treatment. Flow cytometry evidenced the involvement of changes in the cell membrane permeability and the mitochondrial function by BjsV and BjsdV, corroborating with the triggering of the apoptotic pathway by the venom administration. BjsV, BjsdV, and BaV also led to extensive DNA damage and were shown to modulate the gene expression of transcripts related to the cell cycle progression and suppress the expression of the BCR-ABL1 oncogene. Altogether, these findings suggest that the venoms trigger the apoptosis pathway due to mitochondrial damage and cell cycle arrest, with modulation of intracellular pathways important for CML progression. Thus, indicating the pharmacological potential of these venoms in the development of new antitumoral compounds.
Collapse
Affiliation(s)
- Aline D Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil.
| | - Emerson Lucena da Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Adrhyann Jullyanne de Sousa Portilho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Laís Lacerda Brasil de Oliveira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Emanuel Cintra Austregésilo Bezerra
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Moema Leitão-Araújo
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Dr. Salvador França St., 1427, 90690-000, Porto Alegre, RS, Brazil
| | - Maria Lúcia Machado-Alves
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Dr. Salvador França St., 1427, 90690-000, Porto Alegre, RS, Brazil
| | - Carlos Correa Neto
- Instituto Vital Brazil, Maestro José Botelho St., 64, 24230-410, Niterói, RJ, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, César Pernetta St., 1573-1675, 21941-902, Rio de Janeiro-RJ, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals, Fazenda Experimental Lageado, São Paulo State University, José Barbosa de Barros St., 1780, 18610-307, Botucatu, SP, Brazil
| | - Caroline de Fátima Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Roberta J B Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil
| | - Raquel C Montenegro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil.
| |
Collapse
|
6
|
Bialves TS, Bastos Junior CLQ, Cordeiro MF, Boyle RT. Snake venom, a potential treatment for melanoma. A systematic review. Int J Biol Macromol 2023; 231:123367. [PMID: 36690229 DOI: 10.1016/j.ijbiomac.2023.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Despite advances in treating patients with melanoma, there are still many treatment challenges to overcome. Studies with snake venom-derived proteins/peptides describe their binding potential, and inhibition of some proliferative mechanisms in melanoma. The combined use of these compounds with current therapies could be the strategic gap that will help us discover more effective treatments for melanoma. The present study aimed to carry out a systematic review identifying snake venom proteins and peptides described in the literature with antitumor, antimetastatic, or antiangiogenic effects on melanoma and determine the mechanisms of action that lead to these anti-tumor effects. Snake venoms contain proteins and peptides which are antiaggregant, antimetastatic, and antiangiogenic. The in vivo results are encouraging, considering the reduction of metastases and tumor size after treatment. In addition to these results, it was reported that these venom compounds could act in combination with chemotherapeutics (Acurhagin-C; Macrovipecetin), sensitizing and preparing tumor cells for treatment. There is a consensus that snake venom is a promising strategy for the improvement of antimelanoma therapies, but it has been little explored in the current context, combined with inhibitors, immunotherapy or tumor microenvironment, for example. We suggest Lebein as a candidate for combination therapy with BRAF inhibitors.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Claudio L Q Bastos Junior
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Universidade do Oeste de Santa Catarina - UNOESC, Rua Roberto Trompovski 224, Joaçaba, Santa Catarina, CEP 89600-000, Brazil.
| | - Robert Tew Boyle
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| |
Collapse
|
7
|
Urra FA, Vivas-Ruiz DE, Sanchez EF, Araya-Maturana R. An Emergent Role for Mitochondrial Bioenergetics in the Action of Snake Venom Toxins on Cancer Cells. Front Oncol 2022; 12:938749. [PMID: 35924151 PMCID: PMC9343075 DOI: 10.3389/fonc.2022.938749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Beyond the role of mitochondria in apoptosis initiation/execution, some mitochondrial adaptations support the metastasis and chemoresistance of cancer cells. This highlights mitochondria as a promising target for new anticancer strategies. Emergent evidence suggests that some snake venom toxins, both proteins with enzymatic and non-enzymatic activities, act on the mitochondrial metabolism of cancer cells, exhibiting unique and novel mechanisms that are not yet fully understood. Currently, six toxin classes (L-amino acid oxidases, thrombin-like enzymes, secreted phospholipases A2, three-finger toxins, cysteine-rich secreted proteins, and snake C-type lectin) that alter the mitochondrial bioenergetics have been described. These toxins act through Complex IV activity inhibition, OXPHOS uncoupling, ROS-mediated permeabilization of inner mitochondrial membrane (IMM), IMM reorganization by cardiolipin interaction, and mitochondrial fragmentation with selective migrastatic and cytotoxic effects on cancer cells. Notably, selective internalization and direct action of snake venom toxins on tumor mitochondria can be mediated by cell surface proteins overexpressed in cancer cells (e.g. nucleolin and heparan sulfate proteoglycans) or facilitated by the elevated Δψm of cancer cells compared to that non-tumor cells. In this latter case, selective mitochondrial accumulation, in a Δψm-dependent manner, of compounds linked to cationic snake peptides may be explored as a new anti-cancer drug delivery system. This review analyzes the effect of snake venom toxins on mitochondrial bioenergetics of cancer cells, whose mechanisms of action may offer the opportunity to develop new anticancer drugs based on toxin scaffolds.
Collapse
Affiliation(s)
- Félix A. Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, Chile
- *Correspondence: Félix A. Urra,
| | - Dan E. Vivas-Ruiz
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Ciudad Universitaria, Lima, Peru
| | - Eladio Flores Sanchez
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, Chile
- Laboratorio de Productos Bioactivos, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
8
|
Joglekar AV, Dehari D, Anjum MM, Dulla N, Chaudhuri A, Singh S, Agrawal AK. Therapeutic potential of venom peptides: insights in the nanoparticle-mediated venom formulations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00415-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Venoms are the secretions produced by animals, generally for the purpose of self-defense or catching a prey. Biochemically venoms are mainly composed of proteins, lipids, carbohydrates, ions, etc., and classified into three major classes, viz. neurotoxic, hemotoxic and cytotoxic based upon their mode of action. Venoms are composed of different specific peptides/toxins which are responsible for their unique biological actions. Though venoms are generally seen as a source of death, scientifically venom is a complex biochemical substance having a specific pharmacologic action which can be used as agents to diagnose and cure a variety of diseases in humans.
Main body
Many of these venoms have been used since centuries, and their specified therapies can also be found in ancient texts such as Charka Samhita. The modern-day example of such venom therapeutic is captopril, an antihypertensive drug developed from venom of Bothrops jararaca. Nanotechnology is a modern-day science of building materials on a nanoscale with advantages like target specificity, increased therapeutic response and diminished side effects. In the present review we have introduced the venom, sources and related constituents in brief, by highlighting the therapeutic potential of venom peptides and focusing more on the nanoformulations-based approaches. This review is an effort to compile all such report to have an idea about the future direction about the nanoplatforms which should be focused to have more clinically relevant formulations for difficult to treat diseases.
Conclusion
Venom peptides which are fatal in nature if used cautiously and effectively can save life. Several research findings suggested that many of the fatal diseases can be effectively treated with venom peptides. Nanotechnology has emerged as novel strategy in diagnosis, treatment and mitigation of diseases in more effective ways. A variety of nanoformulation approaches have been explored to enhance the therapeutic efficacy and reduce the toxicity and targeted delivery of the venom peptide conjugated with it. We concluded that venom peptides along with nanoparticles can evolve as the new era for potential treatments of ongoing and untreatable diseases.
Graphical Abstract
Collapse
|
9
|
Dias ÊR, de Oliveira LA, Sales Lauria PS, Bordon KDCF, Rodrigues Domênico AM, da Silva Guerreiro ML, Wiezel GA, Cardoso IA, Rossini BC, Marino CL, Pimenta DC, Arantes EC, Casais-e-Silva LL, Branco A, dos Santos LD, Biondi I. Bothrops leucurus snake venom protein profile, isolation and biological characterization of its major toxin PLA2s-likeds. Toxicon 2022; 213:27-42. [DOI: 10.1016/j.toxicon.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022]
|
10
|
Zhang H, Chen Z, Zhang A, Gupte AA, Hamilton DJ. The Role of Calcium Signaling in Melanoma. Int J Mol Sci 2022; 23:ijms23031010. [PMID: 35162934 PMCID: PMC8835635 DOI: 10.3390/ijms23031010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Calcium signaling plays important roles in physiological and pathological conditions, including cutaneous melanoma, the most lethal type of skin cancer. Intracellular calcium concentration ([Ca2+]i), cell membrane calcium channels, calcium related proteins (S100 family, E-cadherin, and calpain), and Wnt/Ca2+ pathways are related to melanogenesis and melanoma tumorigenesis and progression. Calcium signaling influences the melanoma microenvironment, including immune cells, extracellular matrix (ECM), the vascular network, and chemical and physical surroundings. Other ionic channels, such as sodium and potassium channels, are engaged in calcium-mediated pathways in melanoma. Calcium signaling serves as a promising pharmacological target in melanoma treatment, and its dysregulation might serve as a marker for melanoma prediction. We documented calcium-dependent endoplasmic reticulum (ER) stress and mitochondria dysfunction, by targeting calcium channels and influencing [Ca2+]i and calcium homeostasis, and attenuated drug resistance in melanoma management.
Collapse
Affiliation(s)
- Haoran Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhe Chen
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(713)-441-4483
| |
Collapse
|
11
|
FIOROTTI HELENAB, SOARES THIAGOG, BORGES MÁRCIAH, MATAVEL ALESSANDRA, CAMPOS FABIANAV, FIGUEIREDO SUELYGDE. Preliminary report on the hemagglutinating activity of the Scorpaena plumieri fish venom. AN ACAD BRAS CIENC 2022; 94:e20200976. [DOI: 10.1590/0001-376520220976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- HELENA B. FIOROTTI
- Universidade Federal do Espírito Santo, Brazil; Instituto Butantan, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Cavalcante JDS, Nogueira Júnior FA, Bezerra Jorge RJ, Almeida C. Pain modulated by Bothrops snake venoms: Mechanisms of nociceptive signaling and therapeutic perspectives. Toxicon 2021; 201:105-114. [PMID: 34425141 DOI: 10.1016/j.toxicon.2021.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Snake venoms are substances mostly composed by proteins and peptides with high biological activity. Local and systemic effects culminate in clinical manifestations induced by these substances. Pain is the most uncomfortable condition, but it has not been well investigated. This review discusses Bothrops snakebite-induced nociception, highlighting molecules involved in the mediation of this process and perspectives in treatment of pain induced by Bothrops snake venoms (B. alternatus, B. asper, B. atrox, B. insularis, B. jararaca, B. pirajai, B. jararacussu, B. lanceolatus, B. leucurus, B. mattogrossensis, B. moojeni). We highlight, the understanding of the nociceptive signaling, especially in snakebite, enables more efficient treatment approaches. Finally, future perspectives for pain treatment concerning snakebite patients are discussed.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Francisco Assis Nogueira Júnior
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, São Paulo, Brazil.
| |
Collapse
|
13
|
Ghazaryan N, Movsisyan N, Macedo JC, Vaz S, Ayvazyan N, Pardo L, Logarinho E. Macrovipera lebetina obtusa Snake Venom as a Modulator of Antitumor Effect in S-180 Sarcoma Mouse Model. Mol Biol 2021. [DOI: 10.1134/s0026893321020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Machado Braga JR, de Morais-Zani K, Pereira DDS, Sant'Anna SS, da Costa Galizio N, Tanaka-Azevedo AM, Gomes Vilarinho AR, Rodrigues JL, Teixeira da Rocha MM. Sexual and ontogenetic variation of Bothrops leucurus venom. Toxicon 2020; 184:127-135. [PMID: 32553734 DOI: 10.1016/j.toxicon.2020.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 11/19/2022]
Abstract
Various factors, such as geographical origin, climate, sex, age and diet can influence the composition and pathophysiological activities of snake venoms. In this study, we examined the sexual and ontogenetic variations in the venom of Bothrops leucurus, a pitviper responsible for more than 80% of the snakebites in the state of Bahia, northeastern Brazilian. The venoms of 31 snakes were pooled according to sex and age (young, adult and old) and screened by SDS-PAGE (in reducing and non-reducing conditions), reverse-phase high performance liquid chromatography (RP-HPLC), gelatin zymography, and immunoblotting with therapeutic bothropic antivenom (BAV) from the Instituto Butantan. The electrophoretic and chromatographic profiles showed intraspecific ontogenetic variation, whereas sexual variations were less evident. All venoms showed gelatinolytic activity associated with 50-75 kDa protein bands. In addition, all venoms, regardless of the snakes' sex and age, cross-reacted to similar extents with BAV. Our findings show that B. leucurus venom changes during ontogenetic development and demonstrate sexual differences in its composition, indicating differences in biological activity.
Collapse
Affiliation(s)
- Jacqueline Ramos Machado Braga
- Centro de Ciências Agrárias, Ambientais e Biológicas - Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil.
| | - Karen de Morais-Zani
- Interunidades em Biotecnologia, Universidade de São Paulo-Instituto de Pesquisas Tecnológicas-Instituto Butantan, São Paulo, São Paulo, Brazil; Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Diego Dos Santos Pereira
- Centro de Ciências Agrárias, Ambientais e Biológicas - Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil
| | | | - Nathália da Costa Galizio
- Interunidades em Biotecnologia, Universidade de São Paulo-Instituto de Pesquisas Tecnológicas-Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Interunidades em Biotecnologia, Universidade de São Paulo-Instituto de Pesquisas Tecnológicas-Instituto Butantan, São Paulo, São Paulo, Brazil; Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - José Lucca Rodrigues
- Toxinas de Interesse em Saúde, Casa Afrânio do Amaral, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
15
|
Eble JA. Structurally Robust and Functionally Highly Versatile-C-Type Lectin (-Related) Proteins in Snake Venoms. Toxins (Basel) 2019; 11:toxins11030136. [PMID: 30823637 PMCID: PMC6468738 DOI: 10.3390/toxins11030136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Snake venoms contain an astounding variety of different proteins. Among them are numerous C-type lectin family members, which are grouped into classical Ca2+- and sugar-binding lectins and the non-sugar-binding snake venom C-type lectin-related proteins (SV-CLRPs), also called snaclecs. Both groups share the robust C-type lectin domain (CTLD) fold but differ in a long loop, which either contributes to a sugar-binding site or is expanded into a loop-swapping heterodimerization domain between two CLRP subunits. Most C-type lectin (-related) proteins assemble in ordered supramolecular complexes with a high versatility of subunit numbers and geometric arrays. Similarly versatile is their ability to inhibit or block their target molecules as well as to agonistically stimulate or antagonistically blunt a cellular reaction triggered by their target receptor. By utilizing distinct interaction sites differentially, SV-CLRPs target a plethora of molecules, such as distinct coagulation factors and receptors of platelets and endothelial cells that are involved in hemostasis, thrombus formation, inflammation and hematogenous metastasis. Because of their robust structure and their high affinity towards their clinically relevant targets, SV-CLRPs are and will potentially be valuable prototypes to develop new diagnostic and therapeutic tools in medicine, provided that the molecular mechanisms underlying their versatility are disclosed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
16
|
The antitumor efficacy of monomeric disintegrin obtustatin in S-180 sarcoma mouse model. Invest New Drugs 2019; 37:1044-1051. [PMID: 30680583 DOI: 10.1007/s10637-019-00734-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022]
Abstract
Obtustatin, isolated from the Levantine Viper snake venom (Macrovipera lebetina obtusa -MLO), is the shortest known monomeric disintegrin shown to specifically inhibit the binding of the α1β1 integrin to collagen IV. Its oncostatic effect is due to the inhibition of angiogenesis, likely through α1β1 integrin inhibition in endothelial cells. To explore the therapeutic potential of obtustatin, we studied its effect in S-180 sarcoma-bearing mice model in vivo as well as in human dermal microvascular endothelial cells (HMVEC-D) in vitro, and tested anti-angiogenic activity in vivo using the chick embryo chorioallantoic membrane assay (CAM assay). Our in vivo results show that obtustatin inhibits tumour growth by 33%. The expression of vascular endothelial growth factor (VEGF) increased after treatment with obtustatin, but the level of expression of caspase 8 did not change. In addition, our results demonstrate that obtustatin inhibits FGF2-induced angiogenesis in the CAM assay. Our in vitro results show that obtustatin does not exhibit cytotoxic activity in HMVEC-D cells in comparison to in vivo results. Thus, our findings disclose that obtustatin might be a potential candidate for the treatment of sarcoma in vivo with low toxicity.
Collapse
|
17
|
Aranda-Souza MÂ, Lorena VMBD, Correia MTDS, Pereira-Neves A, Figueiredo RCBQD. A C-type lectin from Bothrops leucurus snake venom forms amyloid-like aggregates in RPMI medium and are efficiently phagocytosed by peritoneal macrophages. Toxicon 2019; 157:93-100. [DOI: 10.1016/j.toxicon.2018.11.309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
|
18
|
Aranda-Souza MÂ, de Lorena VMB, Dos Santos Correia MT, de Figueiredo RCBQ. In vitro effect of Bothrops leucurus lectin (BLL) against Leishmania amazonensis and Leishmania braziliensis infection. Int J Biol Macromol 2018; 120:431-439. [PMID: 30118767 DOI: 10.1016/j.ijbiomac.2018.08.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 11/26/2022]
Abstract
Leishmania amazonensis and Leishmania braziliensis are the main causative agents of American Tegumentary Leishmaniasis (ATL) in Brazil. As intracellular parasites, the infection by Leishmania species is dependent on the host immune response and the immunotherapy could be promissory for the development of new strategies to combat ATL. In this work we investigated the leishmanicidal potential of a galactose-binding lectin from the snake venom of Bothrops leucurus (BLL) during the infection with L. amazonensis and L. braziliensis. BLL inhibited the promastigote growth and viability of both species in a mechanism dependent on galactose and calcium. The treatment with BLL also decreases the survival of intracellular parasites for both species and induced profound ultrastructural changes on amastigotes without apparent damage to the host cells. The analysis of the cytokine profile revealed that BLL induced an increase in the proinflammatory cytokines IL-6 and TNF-α by infected macrophages in both species, but differed in relation to IL-1β and IL-10 response. Future works using in vitro and in vivo models are necessary to support the use of these lectins as biotechnological tool in immunological studies.
Collapse
Affiliation(s)
- Mary Ângela Aranda-Souza
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Fundação Oswaldo Cruz, Recife, Brazil.
| | - Virginia Maria Barros de Lorena
- Laboratório de Imunoparasitologia, Instituto Aggeu Magalhães, Departamento de Imunologia, Fundação Oswaldo Cruz, Recife, Brazil
| | | | | |
Collapse
|
19
|
Kaptan E, Sancar‐Bas S, Sancakli A, Bektas S, Bolkent S. The effect of plant lectins on the survival and malignant behaviors of thyroid cancer cells. J Cell Biochem 2018; 119:6274-6287. [DOI: 10.1002/jcb.26875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Engin Kaptan
- Department of BiologyFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| | - Serap Sancar‐Bas
- Department of BiologyFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| | - Aylin Sancakli
- Department of BiologyFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| | - Suna Bektas
- Department of BiologyFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| | - Sehnaz Bolkent
- Department of BiologyFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| |
Collapse
|
20
|
Targeting Metastasis with Snake Toxins: Molecular Mechanisms. Toxins (Basel) 2017; 9:toxins9120390. [PMID: 29189742 PMCID: PMC5744110 DOI: 10.3390/toxins9120390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Metastasis involves the migration of cancer cells from a primary tumor to invade and establish secondary tumors in distant organs, and it is the main cause for cancer-related deaths. Currently, the conventional cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. This highlights the need to find new anti-metastatic drugs. Toxins isolated from snake venoms are a natural source of potentially useful molecular scaffolds to obtain agents with anti-migratory and anti-invasive effects in cancer cells. While there is greater evidence concerning the mechanisms of cell death induction of several snake toxin classes on cancer cells; only a reduced number of toxin classes have been reported on (i.e., disintegrins/disintegrin-like proteins, C-type lectin-like proteins, C-type lectins, serinproteases, cardiotoxins, snake venom cystatins) as inhibitors of adhesion, migration, and invasion of cancer cells. Here, we discuss the anti-metastatic mechanisms of snake toxins, distinguishing three targets, which involve (1) inhibition of extracellular matrix components-dependent adhesion and migration, (2) inhibition of epithelial-mesenchymal transition, and (3) inhibition of migration by alterations in the actin/cytoskeleton network.
Collapse
|
21
|
Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. Biochim Biophys Acta Gen Subj 2017; 1862:600-614. [PMID: 29196192 DOI: 10.1016/j.bbagen.2017.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The resistance of melanoma cells to cisplatin restricts its clinical use. Therefore, the search for novel tumor inhibitors and effective combination treatments that sensitize tumor cells to this drug are still needed. We purified macrovipecetin, a novel heterodimeric C-type lectin, from Macrovipera lebetina snake venom and investigated its anti-tumoral effect on its own or combined with cisplatin, in human melanoma cells. METHODS Biochemical characterization, in vitro cells assays such as viability, apoptosis, adhesion, migration, invasion, Western blotting and in silico analysis were used in this study. RESULTS Macrovipecetin decreased melanoma cell viability 100 times more than cisplatin. Interestingly, when combined with the drug, macrovipecetin enhanced the sensitivity of SK-MEL-28 cells by augmenting their apoptosis through increased expression of the apoptosis inducing factor (AIF) and activation of ERK1/2, p38, AKT and NF-κB. Moreover, macrovipecetin alone or combined with cisplatin induced the expression of TRADD, p53, Bax, Bim and Bad and down-regulated the Bcl-2 expression and ROS levels in SK-MEL-28 cells. Interestingly, these treatments impaired SK-MEL-28 cell adhesion, migration and invasion through modulating the function and expression of αvβ3 integrin along with regulating E-cadherin, vimentin, β-catenin, c-Src and RhoA expression. In silico study suggested that only the α chain of macrovipecetin interacts with a region overlapping the RGD motif binding site on this integrin. CONCLUSIONS We validated the antitumor effect of macrovipecetin when combined, or not, with cisplatin on SK-MEL-28 cells. GENERAL SIGNIFICANCE The presented work proposes the potential use of macrovipecetin and cisplatin in combination as an effective anti-melanoma treatment.
Collapse
|
22
|
Affiliation(s)
- Hassan M. Akef
- National Organization for Research and Control of Biologicals (NORCB), Giza, Egypt
| |
Collapse
|
23
|
de Oliveira Figueirôa E, Aranda-Souza MÂ, Varejão N, Rossato FA, Costa RAP, Figueira TR, da Silva LCN, Castilho RF, Vercesi AE, dos Santos Correia MT. pCramoll and rCramoll lectins induce cell death in human prostate adenocarcinoma (PC-3) cells by impairment of mitochondrial homeostasis. Toxicol In Vitro 2017; 43:40-46. [DOI: 10.1016/j.tiv.2017.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
|
24
|
Delafontaine M, Villas-Boas IM, Mathieu L, Josset P, Blomet J, Tambourgi DV. Enzymatic and Pro-Inflammatory Activities of Bothrops lanceolatus Venom: Relevance for Envenomation. Toxins (Basel) 2017; 9:toxins9080244. [PMID: 28783135 PMCID: PMC5577578 DOI: 10.3390/toxins9080244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022] Open
Abstract
Bothrops lanceolatus, commonly named ‘Fer-de-Lance’, is an endemic snake of the French Caribbean Island of Martinique. Envenomations by B. lanceolatus present clinical aspects characterized by systemic thrombotic syndrome and important local inflammation, involving edema and pain but limited hemorrhage. To investigate mechanisms of venom-induced inflammation, B. lanceolatus venom was characterized, its cross-reactivity with bothropic antivenom explored, its cytotoxicity on human keratinocytes and vascular cells, and the production of cytokines and chemokines were analyzed. We used electrophoretic separation, zymography, colorimetric or fluorimetric enzymatic assays, and immunochemical assays. Therapeutic South American bothropic antivenom cross-reacted with B. lanceolatus venom and completely or partially abolished its PLA2, hyaluronidase, and proteolytic activities, as well as its cytotoxicity for keratinocytes. The substrate specificity of B. lanceolatus venom proteases was emphasized. B. lanceolatus venom cytotoxicity was compared to the B. jararaca venom. Both venoms were highly cytotoxic for keratinocytes (HaCaT), whereas B. lanceolatus venom showed particularly low toxicity for endothelial cells (EAhy926). Patterns of cytokine and chemokine production by cells exposed to the venoms were highly pro-inflammatory. Thus, the results presented here show that B. lanceolatus venom toxins share important antigenic similarities with South American Bothrops species toxins, although their proteases have acquired particular substrate specificity. Moreover, the venom displays important cytotoxic and pro-inflammatory action on human cell types such as keratinocytes and endothelial cells, which are important players in the local and systemic compartments affected by the envenomation.
Collapse
Affiliation(s)
| | | | - Laurence Mathieu
- Prevor Laboratory, Moulin de Verville, Valmondois 95760, France.
| | | | - Joël Blomet
- Prevor Laboratory, Moulin de Verville, Valmondois 95760, France.
| | - Denise V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil.
| |
Collapse
|
25
|
Sun K, Huang C, Yu F, Zhu S, Xu S, He Y, Xu W, Xu L, Feng Y, Wu H, Li X, Fang L, Hu Q. Expression, purification and characterization of a novel recombinant SVTLE, r- agkihpin-2, from Gloydius halys Pallas venom gland in Escherichia coli. Protein Expr Purif 2017; 136:7-13. [DOI: 10.1016/j.pep.2017.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 10/19/2022]
|
26
|
Palharini JG, Richter AC, Silva MF, Ferreira FB, Pirovani CP, Naves KSC, Goulart VA, Mineo TWP, Silva MJB, Santiago FM. Eutirucallin: A Lectin with Antitumor and Antimicrobial Properties. Front Cell Infect Microbiol 2017; 7:136. [PMID: 28487845 PMCID: PMC5403948 DOI: 10.3389/fcimb.2017.00136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/31/2017] [Indexed: 11/13/2022] Open
Abstract
Eutirucallin is a lectin isolated from the latex of Euphorbia tirucalli, a plant known for its medical properties. The present study explores various characteristics of Eutirucallin including stability, cytotoxicity against tumor cells, antimicrobial and antiparasitic activities. Eutirucallin was stable from 2 to 40 days at 4°C, maintained hemagglutinating activity within a restricted range, and showed optimal activity at pH 7.0–8.0. Eutirucallin presented antiproliferative activity for HeLa, PC3, MDA-MB-231, and MCF-7 tumor cells but was not cytotoxic for non-tumorigenic cells such as macrophages and fibroblasts. Eutirucallin inhibited the Ehrlich ascites carcinoma in vivo and it was also observed that Eutirucallin inhibited 62.5% of Escherichia coli growth. Also, Eutirucallin showed to be effective when tested directly against Toxoplasma gondii infection in vitro. Therefore, this study sheds perspectives for pharmacological applications of Eutirucallin.
Collapse
Affiliation(s)
- Julio G Palharini
- Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Aline C Richter
- Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Mariana F Silva
- Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Flavia B Ferreira
- Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Carlos P Pirovani
- Biological Sciences Department, State University of Santa CruzIlhéus, Brazil
| | - Karinne S C Naves
- Laboratory of Clinical Bacteriology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Vivian A Goulart
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of UberlândiaUberlândia, Brazil
| | - Tiago W P Mineo
- Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Marcelo J B Silva
- Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Fernanda M Santiago
- Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| |
Collapse
|
27
|
Coelho LCBB, Silva PMDS, Lima VLDM, Pontual EV, Paiva PMG, Napoleão TH, Correia MTDS. Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1594074. [PMID: 28367220 PMCID: PMC5359455 DOI: 10.1155/2017/1594074] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Lectins are proteins extensively used in biomedical applications with property to recognize carbohydrates through carbohydrate-binding sites, which identify glycans attached to cell surfaces, glycoconjugates, or free sugars, detecting abnormal cells and biomarkers related to diseases. These lectin abilities promoted interesting results in experimental treatments of immunological diseases, wounds, and cancer. Lectins obtained from virus, microorganisms, algae, animals, and plants were reported as modulators and tool markers in vivo and in vitro; these molecules also play a role in the induction of mitosis and immune responses, contributing for resolution of infections and inflammations. Lectins revealed healing effect through induction of reepithelialization and cicatrization of wounds. Some lectins have been efficient agents against virus, fungi, bacteria, and helminths at low concentrations. Lectin-mediated bioadhesion has been an interesting characteristic for development of drug delivery systems. Lectin histochemistry and lectin-based biosensors are useful to detect transformed tissues and biomarkers related to disease occurrence; antitumor lectins reported are promising for cancer therapy. Here, we address lectins from distinct sources with some biological effect and biotechnological potential in the diagnosis and therapeutic of diseases, highlighting many advances in this growing field.
Collapse
Affiliation(s)
| | - Priscila Marcelino dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| |
Collapse
|
28
|
Bothrops jararaca and Bothrops erythromelas Snake Venoms Promote Cell Cycle Arrest and Induce Apoptosis via the Mitochondrial Depolarization of Cervical Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1574971. [PMID: 28050190 PMCID: PMC5168552 DOI: 10.1155/2016/1574971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/06/2016] [Indexed: 01/15/2023]
Abstract
Bothrops jararaca (BJ) and Bothrops erythromelas (BE) are viper snakes found in South-Southeast and Northeast regions of Brazil, respectively. Snake venoms are bioactive neurotoxic substances synthesized and stored by venom glands, with different physiological and pharmacological effects, recently suggesting a possible preference for targets in cancer cells; however, mechanisms of snakes have been little studied. Here, we investigated the mechanism responsible for snake crude venoms toxicity in cultured cervical cancer cells SiHa and HeLa. We show that BJ and BE snake crude venoms exert cytotoxic effects to these cells. The percentage of apoptotic cells and cell cycle analysis and cell proliferation were assessed by flow cytometry and MTT assay. Detection of mitochondrial membrane potential (Rhodamine-123), nuclei morphological change, and DNA fragmentation were examined by staining with DAPI. The results showed that both the BJ and BE venoms were capable of inhibiting tumor cell proliferation, promoting cytotoxicity and death by apoptosis of target SiHa and HeLa cells when treated with BJ and BE venoms. Furthermore, data revealed that both BJ venoms in SiHa cell promoted nuclear condensation, fragmentation, and formation of apoptotic bodies by DAPI assay, mitochondrial damage by Rhodamine-123, and cell cycle block in the G1-G0 phase. BJ and BE venoms present anticancer potential, suggesting that both Bothrops venoms could be used as prototypes for the development of new therapies.
Collapse
|
29
|
Subramani PA, Narasimha RV, Balasubramanian R, Narala VR, Ganesh MR, Michael RD. Cytotoxic effects of Aeromonas hydrophila culture supernatant on peripheral blood leukocytes of Nile tilapia (Oreochromis niloticus): Possible presence of a secreted cytotoxic lectin. FISH & SHELLFISH IMMUNOLOGY 2016; 58:604-611. [PMID: 27702674 DOI: 10.1016/j.fsi.2016.09.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Number of exotoxins like haemolysin, leukocidin, aerolysin etc. were reported from Aeromonas hydrophila. In this study, we report the haemolytic and cytotoxic effect of A. hydrophila culture supernatant (CS) that is specifically inhibited by lactose and also by serum and mucus of Nile tilapia (Oreochromis niloticus). Hence, we assume the presence of a secreted lectin in the CS. CS is toxic to peripheral blood leukocytes (PBL) of O. niloticus as revealed by MTT assay and by flow cytometry. DNA laddering assay indicates that CS causes necrosis to PBL. As a result of necrosis, CS treated PBL showed increased production of reactive oxygen species as indicated by nitroblue tetrazolium and 2',7' -dichlorofluorescin diacetate assays. CS treated PBL showed reduced mRNA expression of TNF-α and IFN-γ genes. When CS was subjected to polyacrylamide gel electrophoresis, it showed a single band corresponding to the molecular weight of 45 kDa. However, upon concentrating the CS by ultrafiltration, many bands were visualized. Further studies at molecular level are required to unravel this macromolecular-leukocyte interaction which would ultimately benefit the aquaculture industry.
Collapse
Affiliation(s)
- Parasuraman Aiya Subramani
- Centre for Fish Immunology, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, India
| | | | - Ramalakshmi Balasubramanian
- Centre for Fish Immunology, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, India
| | | | - M R Ganesh
- Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur, 603203, India
| | - R Dinakaran Michael
- Centre for Fish Immunology, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, India.
| |
Collapse
|
30
|
Huang M, Wu S, Hu Q, Wu H, Wei S, Xie H, Sun K, Li X, Fang L. Agkihpin, a novel SVAE may inhibit the migration and invasion of liver cancer cells associated with the inversion of EMT induced by Wnt/β-catenin signaling inhibition. Biochem Biophys Res Commun 2016; 479:283-289. [PMID: 27644877 DOI: 10.1016/j.bbrc.2016.09.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/27/2022]
Abstract
In our previous work, agkihpin, a snake venom arginine esterase (SVAE), was isolated from the Gloydius halys Pallas, which could attenuate the migration of liver cancer cells. However, the mechanism of the effect of agkihpin on attenuating migration of liver cancer cell is unknown yet. Here, to learn more about agkihpin and explore the possibility of agkihpin as an anti-metastatic drug in the future, a series of experiments about the migration and invasion of liver cancer cells with agkihpin, HepG 2 and SMMC-7721, was conducted. Epithelial-mesenchymal transition (EMT) is an initial step and a major phenotype of cancer metastasis and invasion, while a number of EMT opposite phenomenons were observed, for example, epithelial marker E-cadherin was up-regulated, mesenchymal markers N-cadherin and Vimentin, and transcription regulators Snail and twist were down-regulated after treating with agkihpin in liver cancer cells; canonical Wnt/β-catenin pathway, one of the signals initiated EMT, was inhibited by decreased expressions of FZD7 and β-catenin, phosphorylation of GSK3β (Ser9), and nuclear β-catenin accumulation in agkihpin treated cancer cells. By using bioinformatics analysis and protease activity analysis in vitro we also found that agkihpin might bind and degrade FZD7. As a result, we hypothesized that agkihpin could inhibit the Wnt/β-catenin signaling pathway by cleaving FZD7, leading to the inactivation of the TCF/LEF transcription factor, which contributed to the inversion of EMT, and finally attenuated the migration and invasion of liver cancer cells. Therefore, our findings provided novel mechanistic insights into the role of SVAEs in liver cancer controlling, and raised the possibility that agkihpin may be used therapeutically in liver cancer.
Collapse
Affiliation(s)
- Miao Huang
- Radiology Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Shengming Wu
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China.
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| | - Shu Wei
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| | - Huiqiong Xie
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| | - Kejian Sun
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| | - Xiaolong Li
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| | - Ling Fang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| |
Collapse
|
31
|
Campos JKL, Araújo CSF, Araújo TFS, Santos AFS, Teixeira JA, Lima VLM, Coelho LCBB. Anti-inflammatory and antinociceptive activities of Bauhinia monandra leaf lectin. BIOCHIMIE OPEN 2016; 2:62-68. [PMID: 29632839 PMCID: PMC5889483 DOI: 10.1016/j.biopen.2016.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
A galactose-specific lectin from Bauhinia monandra leaves (BmoLL) has been purified through ammonium sulfate fractionation followed by guar gel affinity chromatography column. This study aimed to evaluate the potential anti-inflammatory and antinociceptive activity of pure BmoLL in mice. Anti-inflammatory activity was evaluated by 1% carrageenan-induced inflammation in mice treated with BmoLL. Acetic acid-induced abdominal writhing and hot plate methods evaluated antinociceptive activity. BmoLL significantly inhibited the carrageenan-induced paw edema by 47% (30 mg/kg) and 60.5% (60 mg/kg); acetylsalicylic acid (ASA, 100 mg/kg) showed inhibition of 70.5%, in comparison to controls. Leukocyte migration, an immune response to the inflammation process, was significantly reduced in presence of BmoLL; in mice treated with ASA the decrease in leukocyte migration was similar to 15 mg/kg of the lectin. BmoLL at doses of 15, 30 and 60 mg/kg significantly reduced the number of animal contortions by 43.1, 50.1 and 71.3%, respectively. BmoLL leukocyte migration was significantly reduced; in mice treated with ASA the decrease in leukocyte migration was similar to 15 mg/kg of the lectin. BmoLL at doses of 15, 30 and 60 mg/kg significantly reduced the number of animal contortions by 43.1, 50.1 and 71.3%, respectively. The lectin (30 and 60 mg/kg) showed a significant effect in the hot plate assay. BmoLL anti-inflammatory and antinociceptive effects were dose-dependent. The search for new and natural compounds, with minimal side effects, to control pain and inflammation, is constantly increasing. BmoLL has great potential as a natural anti-inflammatory product that can be explored for pharmacological purposes. BmoLL inhibited the carrageenan-induced paw edema. BmoLL significantly reduced the number of animal contortions. BmoLL anti-inflammatory and antinociceptive effects in a dose dependent manner.
Collapse
Affiliation(s)
- Janaína K L Campos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Chrisjacele S F Araújo
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Tiago F S Araújo
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Andréa F S Santos
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Vera L M Lima
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| |
Collapse
|
32
|
Sartim MA, Sampaio SV. Snake venom galactoside-binding lectins: a structural and functional overview. J Venom Anim Toxins Incl Trop Dis 2015; 21:35. [PMID: 26413085 PMCID: PMC4583214 DOI: 10.1186/s40409-015-0038-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 09/16/2015] [Indexed: 12/13/2022] Open
Abstract
Snake venom galactoside-binding lectins (SVgalLs) comprise a class of toxins capable of recognizing and interacting with terminal galactoside residues of glycans. In the past 35 years, since the first report on the purification of thrombolectin from Bothrops atrox snake venom, several SVgalLs from Viperidae and Elapidae snake families have been described, as has progressive improvement in the investigation of structural/functional aspects of these lectins. Moreover, the advances of techniques applied in protein-carbohydrate recognition have provided important approaches in order to screen for possible biological targets. The present review describes the efforts over the past 35 years to elucidate SVgalLs, highlighting their structure and carbohydrate recognition function involved in envenomation pathophysiology and potential biomedical applications.
Collapse
Affiliation(s)
- Marco A. Sartim
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Suely V. Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| |
Collapse
|