1
|
Ferreira I, Oliveira I, Bordon K, Reis M, Wiezel G, Sanchez C, Santos L, Santos-Filho N, Pucca M, Antunes L, Lopes D, Arantes E. Beyond Angiogenesis: The Multitasking Approach of the First PEGylated Vascular Endothelial Growth Factor ( CdtVEGF) from Brazilian Rattlesnake Venom. Toxins (Basel) 2023; 15:483. [PMID: 37624240 PMCID: PMC10467076 DOI: 10.3390/toxins15080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
A pioneering study regarding the isolation, biochemical evaluation, functional assays and first PEGylation report of a novel vascular endothelial growth factor from Crotalus durissus terrificus venom (CdtVEGF and PEG-CdtVEGF). CdtVEGF was isolated from crude venom using two different chromatographic steps, representing 2% of soluble venom proteins. Its primary sequence was determined using mass spectrometry analysis, and the molecule demonstrated no affinity to heparin. The Brazilian crotalid antivenom recognized CdtVEGF. Both native and PEGylated CdtVEGF were able to induce new vessel formation and migration, and to increase the metabolic activity of human umbilical endothelial vascular cells (HUVEC), resulting in better wound closure (~50% within 12 h) using the native form. CdtVEGF induced leukocyte recruitment to the peritoneal cavity in mice, with a predominance of neutrophil influx followed by lymphocytes, demonstrating the ability to activate the immune system. The molecule also induced a dose-dependent increase in vascular permeability, and PEG-CdtVEGF showed less in vivo inflammatory activity than CdtVEGF. By unraveling the intricate properties of minor components of snake venom like svVEGF, this study illuminates the indispensable significance of exploring these molecular tools to unveil physiological and pathological processes, elucidates the mechanisms of snakebite envenomings, and could possibly be used to design a therapeutic drug.
Collapse
Affiliation(s)
- Isabela Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Isadora Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Karla Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Mouzarllem Reis
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Gisele Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Caroline Sanchez
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Luísa Santos
- Institute Multidisciplinary in Health, Federal University of Bahia, Vitoria da Conquista 40110-909, BA, Brazil
| | - Norival Santos-Filho
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Manuela Pucca
- Department of Clinical Analysis, Sao Paulo State University (UNESP) Araraquara 14800-901, SP, Brazil
| | - Lusânia Antunes
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Daiana Lopes
- Institute Multidisciplinary in Health, Federal University of Bahia, Vitoria da Conquista 40110-909, BA, Brazil
| | - Eliane Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| |
Collapse
|
2
|
A current perspective on snake venom composition and constituent protein families. Arch Toxicol 2023; 97:133-153. [PMID: 36437303 DOI: 10.1007/s00204-022-03420-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species-68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake's venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.
Collapse
|
3
|
Yokoi H, Sakai A, Kodama T, Magome S, Nagayasu T, Tawara M, Hasegawa T, Yasaka T, Abe T, Takeuchi I. Severe hypofibrinogenemia in patients bitten by Gloydius tsushimaensis in Tsushima Island, Nagasaki, Japan, and treatment strategy. Toxicon 2020; 188:142-149. [PMID: 33130186 DOI: 10.1016/j.toxicon.2020.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022]
Abstract
Gloydius tsushimaensis is an endemic species inhabiting only Tsushima, a remote Japanese island, and is a distinct species from Gloydius blomhoffii widely distributed throughout mainland Japan and Gloydius brevicaudus and Gloydius ussuriensis which are geographically distributed in South Korea. This is the first multicenter retrospective study of G. tsushimaensis bites in Japan. A study of seventy-two patients who visited the former Izuhara Hospital, the former Naka Tsushima Hospital, Tsushima Hospital, and Kamitsushima Hospital during the fourteen years from January 1, 2005, to December 31, 2018, revealed the typical clinical characteristics of G. tsushimaensis bites. Five out of seventy-two cases (6.9%) showed severe hypofibrinogenemia, in which fibrinogen levels were below 100 mg/dl, which is an unreported clinical finding for G. blomhoffii bites. Generally, when fibrinogen levels are lower than 100 mg/dl, the bleeding risk increases, and it is perilous. Severe hypofibrinogenemia cases did not improve after G. blomhoffii antivenom administration. Additionally, all five cases had disseminated intravascular coagulation, and there were two cases of acute kidney injury and one death. five cases had a median maximum creatine kinase level of 5171 IU/l (Interquartile range: 4992-41,310). Although the mechanism is not precise, coagulation tests showed that the G. tsushimaensis venom contains a thrombin-like enzyme. Based on this research, we created an algorithm for the treatment of G. tsushimaensis bites and unified the treatment methods used on the island.
Collapse
Affiliation(s)
- Hideto Yokoi
- Department of Emergency Medicine, Yokohama City University, 4-57 Urafunecho Minami-ku Yokohama, Kanagawa, 232-0024, Japan; Nagasaki Prefecture Tsushima Hospital, 1168-7 Mitsushima-cho Kechi, Tsushima, Nagasaki, 817-0322, Japan.
| | - Atsushi Sakai
- The Japan Snake Institute, 3318 Yabuzuka-cho, Ohata, Gunma, 379-2301, Japan
| | - Tomonori Kodama
- Department of Zoology, Graduate School of Science, Kyoto University, Kirashirakawa-oiwake-cho, Sakyo, Kyoto, 606-8502, Japan
| | - Shogo Magome
- Nagasaki Prefecture Tsushima Hospital, 1168-7 Mitsushima-cho Kechi, Tsushima, Nagasaki, 817-0322, Japan
| | - Tadanori Nagayasu
- Nagasaki Prefecture Tsushima Hospital, 1168-7 Mitsushima-cho Kechi, Tsushima, Nagasaki, 817-0322, Japan
| | - Masayuki Tawara
- Nagasaki Prefecture Tsushima Hospital, 1168-7 Mitsushima-cho Kechi, Tsushima, Nagasaki, 817-0322, Japan
| | - Taizo Hasegawa
- Nagasaki Prefecture Kami Tsushima Hospital, 630 Kamitsushima-cho Hitakatsu, Tsushima, Nagasaki, 817-1701, Japan
| | - Takahiro Yasaka
- Nagasaki Prefecture Tsushima Hospital, 1168-7 Mitsushima-cho Kechi, Tsushima, Nagasaki, 817-0322, Japan
| | - Takeru Abe
- Department of Emergency Medicine, Yokohama City University, 4-57 Urafunecho Minami-ku Yokohama, Kanagawa, 232-0024, Japan
| | - Ichiro Takeuchi
- Department of Emergency Medicine, Yokohama City University, 4-57 Urafunecho Minami-ku Yokohama, Kanagawa, 232-0024, Japan
| |
Collapse
|
4
|
Wiezel GA, Shibao PYT, Cologna CT, Morandi Filho R, Ueira-Vieira C, De Pauw E, Quinton L, Arantes EC. In-Depth Venome of the Brazilian Rattlesnake Crotalus durissus terrificus: An Integrative Approach Combining Its Venom Gland Transcriptome and Venom Proteome. J Proteome Res 2018; 17:3941-3958. [PMID: 30270628 DOI: 10.1021/acs.jproteome.8b00610] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Snake venoms are complex mixtures mainly composed of proteins and small peptides. Crotoxin is one of the most studied components from Crotalus venoms, but many other components are less known due to their low abundance. The venome of Crotalus durissus terrificus, the most lethal Brazilian snake, was investigated by combining its venom gland transcriptome and proteome to create a holistic database of venom compounds unraveling novel toxins. We constructed a cDNA library from C. d. terrificus venom gland using the Illumina platform and investigated its venom proteome through high resolution liquid chromotography-tandem mass spectrometry. After integrating data from both data sets, more than 30 venom components classes were identified by the transcriptomic analysis and 15 of them were detected in the venom proteome. However, few of them (PLA2, SVMP, SVSP, and VEGF) were relatively abundant. Furthermore, only seven expressed transcripts contributed to ∼82% and ∼73% of the abundance in the transcriptome and proteome, respectively. Additionally, novel venom proteins are reported, and we highlight the importance of using different databases to perform the data integration and discuss the structure of the venom components-related transcripts identified. Concluding, this research paves the way for novel investigations and discovery of future pharmacological agents or targets in the antivenom therapy.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Av. do Café, s/n , 14040-903 Ribeirão Preto , Brazil
| | - Priscila Y T Shibao
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Av. do Café, s/n , 14040-903 Ribeirão Preto , Brazil
| | - Camila T Cologna
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Av. do Café, s/n , 14040-903 Ribeirão Preto , Brazil
| | - Romualdo Morandi Filho
- Laboratory of Genetics, Biotechnology Institute , Federal University of Uberlândia , Rua Acre, s/n , 38400-902 Uberlândia , Brazil
| | - Carlos Ueira-Vieira
- Laboratory of Genetics, Biotechnology Institute , Federal University of Uberlândia , Rua Acre, s/n , 38400-902 Uberlândia , Brazil
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry , University of Liège , Bat. B6c , 4000 Liège , Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry , University of Liège , Bat. B6c , 4000 Liège , Belgium
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Av. do Café, s/n , 14040-903 Ribeirão Preto , Brazil
| |
Collapse
|
5
|
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|