1
|
Gyawu VB, Firempong CK, Hamidu JA, Tetteh AY, Ti-Baliana Martha NJ, Yingshu F, Yi Z. Production and evaluation of monovalent anti-snake immunoglobulins from chicken egg yolk using Ghanaian puff adder (Bitis arietans) Venom: Isolation, purification, and neutralization efficacy. Toxicon 2023; 231:107180. [PMID: 37290727 DOI: 10.1016/j.toxicon.2023.107180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Snakebites are rampant in Ghana, especially among the farmers, herdsmen, military recruits, hunters, and rural dwellers, and the antisnake venoms (ASV) use to treat these bites are not locally produced but rather imported, which come with a high cost, lack of constant supply and low specificity. The study was therefore aimed at isolating, purifying, and evaluating the efficacy of monovalent ASV from chicken egg yolk using puff adder (Bitis arietans) venom from Ghana. The major pathophysiological properties of the venom and the efficacy of the locally produced ASV were evaluated. The results showed that the snake venom (LD50 of 0.85 mg/kg body weight) had anticoagulant, haemorrhagic, and edematic activities in mice which were effectively neutralized using the purified egg yolk immunoglobulin Y (IgY), with two distinct molecular weight bands (∼70 and 25 kDa). The cross-neutralization studies also showed that the venom/IgY mixture (2.55 mg/kg body weight: 90 mg/kg body weight) offered 100% protection to the animals with ED50 of IgY being 22.66 mg/kg body weight. However, the applied dose (11.36 mg/kg body weight) of the available polyvalent ASV offered 25% protection compared with the 62% protection of the IgY at the same dose. The findings showed successful isolation and purification of a Ghanaian monovalent ASV with a better neutralization efficacy compared with the clinically available polyvalent drug.
Collapse
Affiliation(s)
- Vincent Baffour Gyawu
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, College of Science, KNUST, Kumasi, Ghana
| | - Caleb Kesse Firempong
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, College of Science, KNUST, Kumasi, Ghana.
| | - Jacob Alhassan Hamidu
- Department of Animal Science, Faculty of Agriculture, College of Agriculture and Natural Resources, KNUST, Kumasi, Ghana
| | - Antonia Yarney Tetteh
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, College of Science, KNUST, Kumasi, Ghana
| | | | | | - Zou Yi
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
2
|
Synergistic activity between beta-lactams and igy antibodies against Pseudomonas aeruginosa in vitro. Mol Immunol 2022; 148:1-5. [DOI: 10.1016/j.molimm.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
|
3
|
Korah MC, Hima SP, V SR, Anil A, Harikrishnan VS, Krishnan LK. Pharmacokinetics and pharmacodynamics of avian egg-yolk derived pure anti-snake venom in healthy and disease animal-model. J Pharm Sci 2022; 111:1565-1576. [DOI: 10.1016/j.xphs.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
4
|
Choraria A, Somasundaram R, Janani S, Rajendran S, Oukkache N, Michael A. Chicken egg yolk antibodies (IgY)-based antivenom for neutralization of snake venoms: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1942063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ankit Choraria
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| | | | - S. Janani
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Selvakumar Rajendran
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Naoual Oukkache
- Venoms and Toxins Laboratory, Institute Pasteur of Morocco, Casablanca, Morocco
| | - A. Michael
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| |
Collapse
|
5
|
Sarmiento K, Rodríguez A, Quevedo-Buitrago W, Torres I, Ríos C, Ruíz L, Salazar J, Hidalgo-Martínez P, Diez H. Comparación de la eficacia, la seguridad y la farmacocinética de los antivenenos antiofídicos: revisión de literatura. UNIVERSITAS MÉDICA 2019. [DOI: 10.11144/javeriana.umed61-1.anti] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
En Colombia se presentan anualmente alrededor de 5000 casos de mordedura de serpiente y su tratamiento se basa en la neutralización con inmunoglobulinas completas purificadas, sin embargo, globalmente se utilizan antivenenos faboterápicos. Objetivo: Dar a conocer diferencias entre las generaciones de antivenenos, la importancia del veneno en la producción de anticuerpos, comparar aspectos farmacocinéticos y los efectos adversos en pacientes. Materiales Métodos: Se realizó una búsqueda de literatura en bases de datos utilizando combinaciones de los descriptores y términos Mesh, en inglés y español. Se cotejaron parámetros farmacocinéticos en estudios preclínicos y los efectos adversos en estudios clínicos. Resultados: Se encontraron diferencias debidas al tamaño de la fracción de la inmunoglobulina que la compone, así entre más pequeña es ésta, se observa mayor distribución a los tejidos y una vida media más corta, comparada con las moléculas más pesadas. Se encontraron estudios con disminución de efectos adversos con antivenenos faboterápicos
Collapse
|
6
|
Leiva CL, Cangelosi A, Mariconda V, Farace M, Geoghegan P, Brero L, Fernández-Miyakawa M, Chacana P. IgY-based antivenom against Bothrops alternatus: Production and neutralization efficacy. Toxicon 2019; 163:84-92. [DOI: 10.1016/j.toxicon.2019.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
|
7
|
Fry BG. Snakebite: When the Human Touch Becomes a Bad Touch. Toxins (Basel) 2018; 10:E170. [PMID: 29690533 PMCID: PMC5923336 DOI: 10.3390/toxins10040170] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Many issues and complications in treating snakebite are a result of poor human social, economic and clinical intervention and management. As such, there is scope for significant improvements for reducing incidence and increasing patient outcomes. Snakes do not target humans as prey, but as our dwellings and farms expand ever farther and climate change increases snake activity periods, accidental encounters with snakes seeking water and prey increase drastically. Despite its long history, the snakebite crisis is neglected, ignored, underestimated and fundamentally misunderstood. Tens of thousands of lives are lost to snakebites each year and hundreds of thousands of people will survive with some form of permanent damage and reduced work capacity. These numbers are well recognized as being gross underestimations due to poor to non-existent record keeping in some of the most affected areas. These underestimations complicate achieving the proper recognition of snakebite’s socioeconomic impact and thus securing foreign aid to help alleviate this global crisis. Antivenoms are expensive and hospitals are few and far between, leaving people to seek help from traditional healers or use other forms of ineffective treatment. In some cases, cheaper, inappropriately manufactured antivenom from other regions is used despite no evidence for their efficacy, with often robust data demonstrating they are woefully ineffective in neutralizing many venoms for which they are marketed for. Inappropriate first-aid and treatments include cutting the wound, tourniquets, electrical shock, immersion in ice water, and use of ineffective herbal remedies by traditional healers. Even in the developed world, there are fundamental controversies including fasciotomy, pressure bandages, antivenom dosage, premedication such as adrenalin, and lack of antivenom for exotic snakebites in the pet trade. This review explores the myriad of human-origin factors that influence the trajectory of global snakebite causes and treatment failures and illustrate that snakebite is as much a sociological and economic problem as it is a medical one. Reducing the incidence and frequency of such controllable factors are therefore realistic targets to help alleviate the global snakebite burden as incremental improvements across several areas will have a strong cumulative effect.
Collapse
Affiliation(s)
- Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
8
|
Aranda-Uribe IS, Ortega E, Martínez-Cordero E. Immunization of BALB/c mice with pigeon IgY induces the production of anti-IgG autoantibodies. Autoimmunity 2017; 50:336-345. [PMID: 28699799 DOI: 10.1080/08916934.2017.1344974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The breakdown of immunological tolerance due to the activation of autoreactive B and T cells triggers physiopathological processes. An example of such conditions is the production of IgG autoantibodies specific for the Fc portion of IgG (anti-Fcγ IgG). Previous reports have shown that patients with pigeon-related hypersensitivity pneumonitis exhibit an increase in the serum levels of anti-Fcγ IgG. There is no in vivo model for the study of this condition and the immunological mechanisms of tolerance breakdown associated with sensitization by pigeon antigens are still unknown. In this work, we show that the repeated immunization of BALB/c mice with pigeon IgY during 16-weeks induces the production of anti-Fcγ IgG and keeps their high levels for seven weeks. The late appearance of anti-Fcγ IgG autoantibodies in the plasma is similar to what has been reported in other experimental autoimmune models. With the occurrence of anti-Fcγ IgG, there is a reduction in the proportion of Foxp3 + cells (regulatory T cells, Tregs) within the population of splenic CD4 + CD25 + T cells. Thus, our data showed that the immunization of BALB/c mice with IgY promotes the production of anti-Fcγ IgG along with a decrease in Tregs in the spleen. We propose that immunization of mice with pigeon antigens, like IgY can provide a model to study the immunological mechanisms involved in the development of pigeon-related hypersensitivity pneumonitis.
Collapse
Affiliation(s)
- Ivan Sammir Aranda-Uribe
- a Facultad de Medicina , Universidad Nacional Autónoma de México, Posgrado Ciencias Biológicas , México City , México.,b Laboratorio de Autoinmunidad , Unidad de Investigación INER , México City , México
| | - Enrique Ortega
- c Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , México City , México
| | | |
Collapse
|
9
|
Navarro D, Vargas M, Herrera M, Segura Á, Gómez A, Villalta M, Ramírez N, Williams D, Gutiérrez JM, León G. Development of a chicken-derived antivenom against the taipan snake (Oxyuranus scutellatus) venom and comparison with an equine antivenom. Toxicon 2016; 120:1-8. [DOI: 10.1016/j.toxicon.2016.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/16/2016] [Accepted: 06/27/2016] [Indexed: 01/18/2023]
|
10
|
Li J, Xu Y, Wang X, Li Y, Wang L, Li X. Construction and characterization of a highly reactive chicken-derived single-chain variable fragment (scFv) antibody against Staphylococcus aureus developed with the T7 phage display system. Int Immunopharmacol 2016; 35:149-154. [DOI: 10.1016/j.intimp.2016.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/06/2016] [Accepted: 02/22/2016] [Indexed: 12/27/2022]
|
11
|
Hedegaard CJ, Heegaard PMH. Passive immunisation, an old idea revisited: Basic principles and application to modern animal production systems. Vet Immunol Immunopathol 2016; 174:50-63. [PMID: 27185263 PMCID: PMC7127230 DOI: 10.1016/j.vetimm.2016.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
Immunisation by administration of antibodies (immunoglobulins) has been known for more than one hundred years as a very efficient means of obtaining immediate, short-lived protection against infection and/or against the disease-causing effects of toxins from microbial pathogens and from other sources. Thus, due to its rapid action, passive immunisation is often used to treat disease caused by infection and/or toxin exposure. However immunoglobulins may also be administered prior to exposure to infection and/or toxin, although they will not provide long-lasting protection as is seen with active immunisation (vaccination) in which an immunological memory is established by controlled exposure of the host to the pathogen in question. With multi-factorial infectious diseases in production animals, especially those that have proven hard to control by vaccination, the potential of passive immunisation remains big. This review highlights a number of examples on the use of passive immunisation for the control of infectious disease in the modern production of a range of animals, including pigs, cattle, sheep, goat, poultry and fish. Special emphasis is given on the enablement of passive immunisation strategies in these production systems through low cost and ease of use as well as on the sources, composition and purity of immunoglobulin preparations used and their benefits as compared to current measures, including vaccination (also comprising maternal vaccination), antibiotics and feed additives such as spray-dried plasma. It is concluded that provided highly efficient, relatively low-price immunoglobulin products are available, passive immunisation has a clear role in the modern animal production sector as a means of controlling infectious diseases, importantly with a very low risk of causing development of bacterial resistance, thus constituting a real and widely applicable alternative to antibiotics.
Collapse
Affiliation(s)
- Chris J Hedegaard
- National Veterinary Institute, Technical University of Denmark, Section for Immunology and Vaccinology, The innate immunology Group, Denmark.
| | - Peter M H Heegaard
- National Veterinary Institute, Technical University of Denmark, Section for Immunology and Vaccinology, The innate immunology Group, Denmark
| |
Collapse
|