1
|
A Deeper Insight into the Tick Salivary Protein Families under the Light of Alphafold2 and Dali: Introducing the TickSialoFam 2.0 Database. Int J Mol Sci 2022; 23:ijms232415613. [PMID: 36555254 PMCID: PMC9779611 DOI: 10.3390/ijms232415613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Hard ticks feed for several days or weeks on their hosts and their saliva contains thousands of polypeptides belonging to dozens of families, as identified by salivary transcriptomes. Comparison of the coding sequences to protein databases helps to identify putative secreted proteins and their potential functions, directing and focusing future studies, usually done with recombinant proteins that are tested in different bioassays. However, many families of putative secreted peptides have a unique character, not providing significant matches to known sequences. The availability of the Alphafold2 program, which provides in silico predictions of the 3D polypeptide structure, coupled with the Dali program which uses the atomic coordinates of a structural model to search the Protein Data Bank (PDB) allows another layer of investigation to annotate and ascribe a functional role to proteins having so far being characterized as "unique". In this study, we analyzed the classification of tick salivary proteins under the light of the Alphafold2/Dali programs, detecting novel protein families and gaining new insights relating the structure and function of tick salivary proteins.
Collapse
|
2
|
Wang Y, Watters N, Jones E, Padula A, Leister E, Haworth M, Henning J, Allavena R. Pulmonary Histopathology in Cats and Dogs with Fatal Tick Paralysis. J Comp Pathol 2022; 197:44-52. [DOI: 10.1016/j.jcpa.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
|
3
|
Towards a generic prototyping approach for therapeutically-relevant peptides and proteins in a cell-free translation system. Nat Commun 2022; 13:260. [PMID: 35017494 PMCID: PMC8752827 DOI: 10.1038/s41467-021-27854-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Advances in peptide and protein therapeutics increased the need for rapid and cost-effective polypeptide prototyping. While in vitro translation systems are well suited for fast and multiplexed polypeptide prototyping, they suffer from misfolding, aggregation and disulfide-bond scrambling of the translated products. Here we propose that efficient folding of in vitro produced disulfide-rich peptides and proteins can be achieved if performed in an aggregation-free and thermodynamically controlled folding environment. To this end, we modify an E. coli-based in vitro translation system to allow co-translational capture of translated products by affinity matrix. This process reduces protein aggregation and enables productive oxidative folding and recycling of misfolded states under thermodynamic control. In this study we show that the developed approach is likely to be generally applicable for prototyping of a wide variety of disulfide-constrained peptides, macrocyclic peptides with non-native bonds and antibody fragments in amounts sufficient for interaction analysis and biological activity assessment. Generic approach for rapid prototyping is essential for the progress of synthetic biology. Here the authors modify the cell-free translation system to control protein aggregation and folding and validate the approach by using single conditions for prototyping of various disulfide-constrained polypeptides.
Collapse
|
4
|
Rodriguez-Valle M, McAlister S, Moolhuijzen PM, Booth M, Agnew K, Ellenberger C, Knowles AG, Vanhoff K, Bellgard MI, Tabor AE. Immunomic Investigation of Holocyclotoxins to Produce the First Protective Anti-Venom Vaccine Against the Australian Paralysis Tick, Ixodes holocyclus. Front Immunol 2021; 12:744795. [PMID: 34671357 PMCID: PMC8522651 DOI: 10.3389/fimmu.2021.744795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Venom producing animals are ubiquitously disseminated among vertebrates and invertebrates such as fish, snakes, scorpions, spiders, and ticks. Of the ~890 tick species worldwide, 27 have been confirmed to cause paralysis in mammalian hosts. The Australian paralysis tick (Ixodes holocyclus) is the most potent paralyzing tick species known. It is an indigenous three host tick species that secretes potent neurotoxins known as holocyclotoxins (HTs). Holocyclotoxins cause a severe and harmful toxicosis leading to a rapid flaccid paralysis which can result in death of susceptible hosts such as dogs. Antivenins are generally polyclonal antibody treatments developed in sheep, horses or camels to administer following bites from venomous creatures. Currently, the methods to prevent or treat tick paralysis relies upon chemical acaricide preventative treatments or prompt removal of all ticks attached to the host followed by the administration of a commercial tick-antiserum (TAS) respectively. However, these methods have several drawbacks such as poor efficacies, non-standardized dosages, adverse effects and are expensive to administer. Recently the I. holocyclus tick transcriptome from salivary glands and viscera reported a large family of 19 holocyclotoxins at 38-99% peptide sequence identities. A pilot trial demonstrated that correct folding of holocyclotoxins is needed to induce protection from paralysis. The immunogenicity of the holocyclotoxins were measured using commercial tick antiserum selecting HT2, HT4, HT8 and HT11 for inclusion into the novel cocktail vaccine. A further 4 HTs (HT1, HT12, HT14 and HT17) were added to the cocktail vaccine to ensure that the sequence variation among the HT protein family was encompassed in the formulation. A second trial comparing the cocktail of 8 HTs to a placebo group demonstrated complete protection from tick challenge. Here we report the first successful anti-venom vaccine protecting dogs from tick paralysis.
Collapse
Affiliation(s)
- Manuel Rodriguez-Valle
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, QLD, Australia
| | - Sonia McAlister
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, QLD, Australia
| | | | - Mitchell Booth
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, QLD, Australia
| | - Kim Agnew
- Paul Dick & Associates Ltd, Castle Hill, NSW, Australia
| | - Claudia Ellenberger
- Elanco Animal Health, Yarrandoo Research and Development Centre, Kemps Creek, NSW, Australia
| | | | - Kathleen Vanhoff
- Elanco Animal Health, Yarrandoo Research and Development Centre, Kemps Creek, NSW, Australia
| | - Matthew I Bellgard
- eResearch Office, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ala E Tabor
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
5
|
Kobuch S, Matar E, Fung VS. Isolated facial nerve palsy following Ixodes holocyclus tick envenomation. Emerg Med Australas 2021; 33:764-766. [PMID: 34096186 DOI: 10.1111/1742-6723.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Sophie Kobuch
- Emergency Department, Northwest Regional Hospital, Burnie, Tasmania, Australia
| | - Elie Matar
- Department of Neurology, Westmead Hospital, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Victor Sc Fung
- Department of Neurology, Westmead Hospital, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
De novo assembled salivary gland transcriptome and expression pattern analyses for Rhipicephalus evertsi evertsi Neuman, 1897 male and female ticks. Sci Rep 2021; 11:1642. [PMID: 33452281 PMCID: PMC7810686 DOI: 10.1038/s41598-020-80454-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ticks secrete proteins in their saliva that change over the course of feeding to modulate the host inflammation, immune responses, haemostasis or may cause paralysis. RNA next generation sequencing technologies can reveal the complex dynamics of tick salivary glands as generated from various tick life stages and/or males and females. The current study represents 15,115 Illumina sequenced contigs of the salivary gland transcriptome from male and female Rhipicephalus evertsi evertsi ticks of early, mid and late feeding stages from 1320 separate assemblies using three short read assemblers. The housekeeping functional class contributed to the majority of the composition of the transcriptome (80%) but with lower expression (51%), while the secretory protein functional class represented only 14% of the transcriptome but 46% of the total coverage. Six percent had an unknown status contributing 3% of the overall expression in the salivary glands. Platelet aggregation inhibitors, blood clotting inhibitors and immune-modulators orthologous to the ancestral tick lineages were confirmed in the transcriptome and their differential expression during feeding in both genders observed. This transcriptome contributes data of importance to salivary gland biology and blood feeding physiology of non-model organisms.
Collapse
|
7
|
Kan MW, Craik DJ. Discovery of Cyclotides from Australasian Plants. Aust J Chem 2020. [DOI: 10.1071/ch19658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article is part of a special issue celebrating the contributions of Professor Paul Alewood to peptide science. We begin by providing a summary of collaborative projects between the Alewood and Craik groups at The University of Queensland and highlighting the impacts of some of these studies. In particular, studies on the discovery, synthesis, structures, and bioactivities of disulfide-rich toxins from animal venoms have led to a greater understanding of the biology of ion channels and to applications of these bioactive peptides in drug design. The second part of the article focuses on plant-derived disulfide-rich cyclic peptides, known as cyclotides, and includes an analysis of the geographical distribution of Australasian plant species that contain cyclotides as well as an analysis of the diversity of cyclotide sequences found in Australasian plants. This should provide a useful resource for researchers to access native cyclotides and explore their chemistry and biology.
Collapse
|
8
|
Padula AM, Leister EM, Webster RA. Tick paralysis in dogs and cats in Australia: treatment and prevention deliverables from 100 years of research. Aust Vet J 2019; 98:53-59. [PMID: 31762008 DOI: 10.1111/avj.12891] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 02/02/2023]
Abstract
This review of tick paralysis caused by Ixodes holocyclus in Australia addresses the question: What are the key discoveries that have enabled effective treatment and prevention of tick paralysis in dogs and cats? Critical examination of 100 years of literature reveals that arguably only three achievements have advanced treatment and prevention of tick paralysis in animals. First, the most significant treatment advance was the commercial availability of tick antiserum in the 1930s. Hyperimmune serum currently remains the only specific anti-paralysis tick therapy available to veterinarians in Australia. Second, advances in veterinary critical care have increased survival rates of the most severely affected dogs and cats. Critical care advancements have been enabled through specialised veterinary hospitals that can provide appropriate care 24 h a day, and advanced training of veterinarians, veterinary nurses and technicians. Third, perhaps that biggest advance of all in the last 100 years of research has been the commercial availability of the isooxazoline class of acaricidal preventatives in Australia specifically for I. holocyclus. This highly effective class of preventatives offers long duration of action, low cost, spot-on or oral formulations and a low rate of adverse reactions. Animal owners and veterinarians now have the most useful tool of all - a reliable preventative. This review reveals the key events in research over the last 100 years and the tortuous pathway to delivering better treatment and preventative options for this enigmatic Australian parasite.
Collapse
Affiliation(s)
- A M Padula
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Melbourne, Parkville, Victoria, Australia.,Padula Serums Pty Ltd, Bairnsdale, Victoria, Australia
| | - E M Leister
- Pet Intensive Care Unit (Pet ICU), Underwood, Queensland, 4119, Australia
| | - R A Webster
- Pet Intensive Care Unit (Pet ICU), Underwood, Queensland, 4119, Australia
| |
Collapse
|
9
|
Denisov SS, Ippel JH, Heinzmann ACA, Koenen RR, Ortega-Gomez A, Soehnlein O, Hackeng TM, Dijkgraaf I. Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. J Biol Chem 2019; 294:12370-12379. [PMID: 31235521 PMCID: PMC6699855 DOI: 10.1074/jbc.ra119.008902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host immune responses. Evasin-3 is a small salivary protein that belongs to a class of chemokine-binding proteins isolated from the brown dog tick, Rhipicephalus sanguineus. Evasin-3 has been shown to have a high affinity for chemokines CXCL1 and CXCL8 and to diminish inflammation in mice. In the present study, solution NMR spectroscopy was used to investigate the structure of Evasin-3 and its CXCL8–Evasin-3 complex. Evasin-3 is found to disrupt the glycosaminoglycan-binding site of CXCL8 and inhibit the interaction of CXCL8 with CXCR2. Structural data were used to design two novel CXCL8-binding peptides. The linear tEv3 17–56 and cyclic tcEv3 16–56 dPG Evasin-3 variants were chemically synthesized by solid-phase peptide synthesis. The affinity of these newly synthesized variants to CXCL8 was measured by surface plasmon resonance biosensor analysis. The Kd values of tEv3 17–56 and tcEv3 16–56 dPG were 27 and 13 nm, respectively. Both compounds effectively inhibited CXCL8-induced migration of polymorphonuclear neutrophils. The present results suggest utility of synthetic Evasin-3 variants as scaffolds for designing and fine-tuning new chemokine-binding agents that suppress immune responses and inflammation.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Johannes H Ippel
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Almudena Ortega-Gomez
- Institute for Cardiovascular Prevention, Ludwig Maximilian University, 80336, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig Maximilian University, 80336, Munich, Germany; German Center for Cardiovascular Research, 13316, Berlin, Germany; Partner Site Munich Heart Alliance, 80802 Munich, Germany; Department of Physiology and Pharmacology and Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tilman M Hackeng
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Pienaar R, Neitz AWH, Mans BJ. Tick Paralysis: Solving an Enigma. Vet Sci 2018; 5:E53. [PMID: 29757990 PMCID: PMC6024606 DOI: 10.3390/vetsci5020053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022] Open
Abstract
In comparison to other arachnids, ticks are major vectors of disease, but less than 8% of the known species are capable of inducing paralysis, as compared to the ~99⁻100% arachnids that belong to venomous classes. When considering the potential monophyly of venomous Arachnida, this review reflects on the implications regarding the classification of ticks as venomous animals and the possible origin of toxins. The origin of tick toxins is compared with scorpion and spider toxins and venoms based on their significance, functionality, and structure in the search to find homologous venomous characters. Phenotypic evaluation of paralysis, as caused by different ticks, demonstrated the need for expansion on existing molecular data of pure isolated tick toxins because of differences and discrepancies in available data. The use of in-vivo, in-vitro, and in-silico assays for the purification and characterization of paralysis toxins were critically considered, in view of what may be considered to be a paralysis toxin. Purified toxins should exhibit physiologically relevant activity to distinguish them from other tick-derived proteins. A reductionist approach to identify defined tick proteins will remain as paramount in the search for defined anti-paralysis vaccines.
Collapse
Affiliation(s)
- Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council⁻Onderstepoort Veterinary Research, Onderstepoort, Pretoria 0110, South Africa.
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa.
| | - Albert W H Neitz
- Division of Biochemistry, University of Pretoria, Hatfield, Pretoria 0028, South Africa.
| | - Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council⁻Onderstepoort Veterinary Research, Onderstepoort, Pretoria 0110, South Africa.
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa.
- Department of Life and Consumer Sciences, University of South Africa, Florida, Johannesburg 1710, South Africa.
| |
Collapse
|
11
|
Rodriguez-Valle M, Moolhuijzen P, Barrero RA, Ong CT, Busch G, Karbanowicz T, Booth M, Clark R, Koehbach J, Ijaz H, Broady K, Agnew K, Knowles AG, Bellgard MI, Tabor AE. Transcriptome and toxin family analysis of the paralysis tick, Ixodes holocyclus. Int J Parasitol 2018; 48:71-82. [DOI: 10.1016/j.ijpara.2017.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 01/24/2023]
|
12
|
Karbanowicz T, Dover E, Mu X, Tabor A, Rodriguez-Valle M. Extracellular expression of the HT1 neurotoxin from the Australian paralysis tick in two Saccharomyces cerevisiae strains. Toxicon 2017; 140:1-10. [DOI: 10.1016/j.toxicon.2017.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
|
13
|
Pek CH, Cheong CSJ, Yap YL, Doggett S, Lim TC, Ong WC, Lim J. Rare Cause of Facial Palsy: Case Report of Tick Paralysis by Ixodes Holocyclus Imported by a Patient Travelling into Singapore from Australia. J Emerg Med 2016; 51:e109-e114. [PMID: 27618477 DOI: 10.1016/j.jemermed.2016.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 11/04/2015] [Accepted: 02/17/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ticks are blood-sucking arachnids that feed on all classes of vertebrates, including humans. Ixodes holocyclus, also known as the Australian Paralysis Tick, is capable of causing a myriad of clinical issues in humans and companion animals, including the transmission of infectious agents, toxin-mediated paralysis, allergic and inflammatory reactions, and mammalian meat allergies in humans. The Australian Paralysis Tick is endemic to Australia, and only two other exported cases have been reported in the literature. CASE REPORT We report the third exported case of tick paralysis caused by I. holocyclus, which was imported on a patient into Singapore. We also discuss the clinical course of the patient, the salient points of management, and the proper removal of this tick species. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: With increasing air travel, emergency physicians need to be aware of and to identify imported cases of tick paralysis to institute proper management and advice to the patient. We also describe the tick identification features and proper method of removal of this tick species.
Collapse
Affiliation(s)
- Chong Han Pek
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Health System, Singapore
| | - Crystal Shuk Jin Cheong
- Department of Otolaryngology - Head and Neck Surgery, National University Health System, Singapore
| | - Yan Lin Yap
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Health System, Singapore
| | - Stephen Doggett
- Department of Medical Entomology, Pathology West, Westmead Hospital, Westmead, NSW, Australia
| | - Thiam Chye Lim
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Health System, Singapore
| | - Wei Chen Ong
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Health System, Singapore
| | - Jane Lim
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Health System, Singapore
| |
Collapse
|
14
|
Rong M, Liu J, Zhang M, Wang G, Zhao G, Wang G, Zhang Y, Hu K, Lai R. A sodium channel inhibitor ISTX-I with a novel structure provides a new hint at the evolutionary link between two toxin folds. Sci Rep 2016; 6:29691. [PMID: 27407029 PMCID: PMC4942781 DOI: 10.1038/srep29691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
Members of arachnida, such as spiders and scorpions, commonly produce venom with specialized venom glands, paralyzing their prey with neurotoxins that specifically target ion channels. Two well-studied motifs, the disulfide-directed hairpin (DDH) and the inhibitor cystine knot motif (ICK), are both found in scorpion and spider toxins. As arachnids, ticks inject a neurotoxin-containing cocktail from their salivary glands into the host to acquire a blood meal, but peptide toxins acting on ion channels have not been observed in ticks. Here, a new neurotoxin (ISTX-I) that acts on sodium channels was identified from the hard tick Ixodes scapularis and characterized. ISTX-I exhibits a potent inhibitory function with an IC50 of 1.6 μM for sodium channel Nav1.7 but not other sodium channel subtypes. ISTX-I adopts a novel structural fold and is distinct from the canonical ICK motif. Analysis of the ISTX-I, DDH and ICK motifs reveals that the new ISTX-I motif might be an intermediate scaffold between DDH and ICK, and ISTX-I is a clue to the evolutionary link between the DDH and ICK motifs. These results provide a glimpse into the convergent evolution of neurotoxins from predatory and blood-sucking arthropods.
Collapse
Affiliation(s)
- Mingqiang Rong
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Kunming Yunnan 650223, China
| | - Jiangxin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meilin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Kunming Yunnan 650223, China
| | - Gan Wang
- Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Gang Zhao
- Yunnan Academy of Grassland and Animal Science, Xiaoshao, Kunming 650212, China
| | - Guodong Wang
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Kaifeng Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Kunming Yunnan 650223, China.,Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
15
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
16
|
Undheim EAB, Mobli M, King GF. Toxin structures as evolutionary tools: Using conserved 3D folds to study the evolution of rapidly evolving peptides. Bioessays 2016; 38:539-48. [DOI: 10.1002/bies.201500165] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eivind A. B. Undheim
- Institute for Molecular BioscienceUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Mehdi Mobli
- Centre for Advanced ImagingUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Glenn F. King
- Institute for Molecular BioscienceUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
17
|
Diaz JH. A Comparative Meta-Analysis of Tick Paralysis in the United States and Australia. Clin Toxicol (Phila) 2015; 53:874-83. [PMID: 26359765 DOI: 10.3109/15563650.2015.1085999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Tick paralysis is a neurotoxic envenoming that mimics polio and primarily afflicts children, especially in hyperendemic regions of the Western United States of America (US) and Eastern Australia. OBJECTIVE To compare the epidemiology, clinical and electrodiagnostic manifestations, and outcomes of tick paralysis in the US versus Australia. METHODS A comparative meta-analysis of the scientific literature was conducted using Internet search engines to identify confirmed cases of tick paralysis in the US and Australia. Continuous variables including age, time to tick removal, and duration of paralysis were analyzed for statistically significant differences by unpaired t-tests; and categorical variables including gender, regional distribution, tick vector, tick attachment site, and misdiagnosis were compared for statistically significant differences by chi-square or Fisher exact tests. RESULTS Tick paralysis following ixodid tick bites occurred seasonally and sporadically in individuals and in more clusters of children than in adults of both sexes in urban and rural locations in North America and Australia. The case fatality rate for tick paralysis was low, and the proportion of misdiagnoses of tick paralysis as Guillain-Barré syndrome (GBS) was greater in the US than in Australia. Although electrodiagnostic manifestations were similar, the neurotoxidromes differed significantly with prolonged weakness and even residual neuromuscular paralysis following tick removal in Australian cases compared with US cases. DISCUSSION Tick paralysis was a potentially lethal envenoming that occurred in children and adults in a seasonally and regionally predictable fashion. Tick paralysis was increasingly misdiagnosed as GBS during more recent reporting periods in the US. Such misdiagnoses often directed unnecessary therapies including central venous plasmapheresis with intravenous immunoglobulin G that delayed correct diagnosis and tick removal. CONCLUSION Tick paralysis should be added to and quickly excluded from the differential diagnoses of acute ataxia with ascending flaccid paralysis, especially in children living in tick paralysis-endemic regions worldwide.
Collapse
Affiliation(s)
- James H Diaz
- a Louisiana State University Health Sciences Center, School of Public Health , 2020 Gravier Street, New Orleans, Louisiana 70112 United States
| |
Collapse
|
18
|
Cordeiro FA, Amorim FG, Anjolette FAP, Arantes EC. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. J Venom Anim Toxins Incl Trop Dis 2015; 21:24. [PMID: 26273285 PMCID: PMC4535291 DOI: 10.1186/s40409-015-0028-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/21/2015] [Indexed: 11/30/2022] Open
Abstract
Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.
Collapse
Affiliation(s)
- Francielle A Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernanda G Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernando A P Anjolette
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|