1
|
Sadeghi M, Amari A, Asadirad A, Nemati M, Khodadadi A. F1 fraction isolated from Mesobuthus eupeus scorpion venom induces macrophage polarization toward M1 phenotype and exerts anti-tumoral effects on the CT26 tumor cell line. Int Immunopharmacol 2024; 132:111960. [PMID: 38554440 DOI: 10.1016/j.intimp.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Scorpion venoms identified as agents with anti-tumor and anti-angiogenic features. Tumor microenvironment (TME) plays a pivotal role in the process of tumorigenesis, tumor development, and polarization of M2 phenotype tumor associated macrophages (TAMs). M2 polarized cells are associated with tumor growth, invasion, and metastasis. The fractionation process was performed by gel filtration chromatography on a Sephadex G50 column. To elucidate whether scorpion venom can alter macrophage polarization, we treated interleukin (IL)-4-polarized M2 cells with isolated fractions from Mesobuthus eupeus. Next, we evaluated the cytokine production and specific markers expression for M2 and M1 phenotype using enzyme linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR), respectively. The phagocytic capacity of macrophages was also assessed. In addition, the migration assay and MTT analysis were performed to investigate the effects of reprogrammed macrophages on the CT-26 colon cancer cells. The results indicated that F1 fraction of venom significantly upregulated the levels and expression of M1-associated cytokines and markers, including tumor necrosis factor-alpha (TNF-α) (p < 0.001), IL-1 (p < 0.01), interferon regulatory factor 5 (IRF5) (p < 0.0001), induced nitric oxide synthase (iNOS) (p < 0.0001), and CD86 (p < 0.0001), and downregulated M2-related markers, including transforming growth factor-beta (TGF-β) (p < 0.05), IL-10 (p < 0.05), Fizz1 (p < 0.0001), arginase-1 (Arg-1) (p < 0.0001), and CD206 (p < 0.001). The macrophage phagocytic capacity was enhanced after treatment with F1 fraction (p < 0.01). Moreover, incubation of CT-26 cell line with conditioned media of F1-treated macrophages suppressed migration (p < 0.0001) and proliferation (p < 0.01) of tumor cells. In conclusion, our findings demonstrated the potential of Mesobuthus eupeus venom in M2-to-M1 macrophage polarization as a promising therapeutic approach against proliferation and metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Amari
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Nemati
- Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Ghasemi Dehcheshmeh M, Ghadiri A, Rashno M, Assarehzadegan MA, Khodadadi A, Goudarzi G. Effect of water-soluble PM 10 on the production of TNF-α by human monocytes and induction of apoptosis in A549 human lung epithelial cells. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:143-150. [PMID: 34150225 PMCID: PMC8172754 DOI: 10.1007/s40201-020-00588-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Long-term exposure to airborne particles of 10 µm and less in size (PM10) in dust can lead to increased risk of diseases such as respiratory, cardiovascular, lung cancer and atherosclerosis. The aim of the study was to evaluate the effects of water-soluble PM10 particles in the Middle East Dust (MED) storm in Ahvaz, Iran, on the production of TNF-α by human monocytes. In addition, we assessed the level of induction of apoptosis in isolated A549 human pulmonary epithelial cells. For this purpose, isolated human blood monocytes (250,000 to 300,000 cell/ ml) as well as isolated human pulmonary A549 epithelial cells (100,0000 cell/ ml) were exposed to various concentrations (62.5, 125, 250, 500 µg/ml) of water-soluble PM10 particles for different incubation periods (12, 24, 48 h). The results showed that exposure to PM10 particles increased the production of TNF-α in human monocytes and promoted apoptosis induction in A549 cells, in both concentration and incubation of period-dependent manner. In conclusion, airborne dust particles in Ahvaz city contain active compounds capable of increasing production of the pro-inflammatory cytokine, TNF-α, and inducing apoptosis of lung epithelial cells.
Collapse
Affiliation(s)
| | - Ata Ghadiri
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Dashti Gerdabi N, Ghafourian M, Nakajima M, Iranparast S, Khodadadi A. Effect of 5-aminolevulinic acid on gene expression and presence of NKG2D receptor on NK cells. Int Immunopharmacol 2021; 97:107677. [PMID: 33933844 DOI: 10.1016/j.intimp.2021.107677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022]
Abstract
Natural killer (NK) cells are involved in innate and acquired immunity, stimulating and enhancing immune responses via secretion of IFN-γ and TNF-α. NKG2D is among the most important NK's stimulant receptors, the ligands of which are elevated on cancerous and virus-infected cells. We analyzed effect of 5-ALA on gene expression and receptor presentation of NKG2D, which is present on peripheral blood NK cells. Mononuclear cells were isolated from the venous blood samples of healthy individuals. RNA extraction and cDNA synthesis were performed after exposure of samples to 5-ALA, and gene expression was evaluated using Real-Time PCR, and the receptor presence rate on the cell surface was evaluated by flow-cytometry analysis. The results showed the gene expression of NKG2D and the presence of its receptor on NK cells were increased.5-ALA can be used to activate NK cells in their killing activity, preventing the growth and metastasis of cancerous cells.
Collapse
Affiliation(s)
- Nader Dashti Gerdabi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian
- Department of Immunology, School of Medicine, Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Motowo Nakajima
- CEO, Executive Director, SBI Pharmaceuticals Co., Ltd, Tokyo, Japan; Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Sara Iranparast
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Cota-Arce JM, Zazueta-Favela D, Díaz-Castillo F, Jiménez S, Bernáldez-Sarabia J, Caram-Salas NL, Dan KWL, Escobedo G, Licea-Navarro AF, Possani LD, De León-Nava MA. Venom components of the scorpion Centruroides limpidus modulate cytokine expression by T helper lymphocytes: Identification of ion channel-related toxins by mass spectrometry. Int Immunopharmacol 2020; 84:106505. [PMID: 32380407 DOI: 10.1016/j.intimp.2020.106505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 11/19/2022]
Abstract
The study of the effector mechanisms of T helper cells has revealed different phenotypic characteristics that can be manipulated for designing new therapeutic schemes in different pathological scenarios. Ion channels are significant targets in T lymphocyte modulation since they are closely related to their effector activity. Remarkably, some toxins produced by scorpions specifically affect the function of these membrane proteins. For that reason, these toxins are important candidates in the search for new immunomodulators. Here, the effect of two venom fractions of the scorpion Centruroides limpidus was assessed on T lymphocyte proliferation and cytokine production. The venom fractions ClF8 and ClF9 were separated by reversed-phase high-performance liquid chromatography (RP-HPLC) and cultured at 25 and 35 µg/ml with murine T lymphocytes. The results indicate that the fraction ClF8 increased both production and secretion levels of IFN-γ, IL-4, IL-17A and IL-10 by CD4+ T cells at 24 h. In contrast, fraction ClF9 only promoted the secretion of IL-17A and IL-10 at its highest concentration (35 µg/ml). Both fractions did not show any effect on T cell proliferation. Subsequent analyses by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed seventeen toxins in the fraction ClF8 and five toxins in the fraction ClF9, most of them with voltage-gated sodium (NaScTx) and potassium (KScTx) channels as molecular targets. These toxins might probably interact with ion channels involved in T lymphocyte activity. Our findings suggest that the difference in composition between the two fractions could be related to the observed effects, and the components identified could be isolated to search for possible immunomodulatory molecules.
Collapse
Affiliation(s)
- Julián M Cota-Arce
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Daniela Zazueta-Favela
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Fernando Díaz-Castillo
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Samanta Jiménez
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Johanna Bernáldez-Sarabia
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Nadia L Caram-Salas
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México; Cátedra CONACYT/Departamento de Innovación Biomédica, CICESE, México
| | - Kee W L Dan
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Galileo Escobedo
- Laboratorio de Proteómica y Metabolómica, Dirección de Investigación, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, C.P. 06720, México
| | - Alexei F Licea-Navarro
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, México
| | - Marco A De León-Nava
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México.
| |
Collapse
|
5
|
Amirgholami N, Karampour NS, Ghadiri A, Tagavi Moghadam A, Ghasemi Dehcheshmeh M, Pipelzadeh MH. A. crassicauda, M. eupeus and H. lepturus scorpion venoms initiate a strong in vivo anticancer immune response in CT26-tumor mice model. Toxicon 2020; 180:31-38. [PMID: 32275983 DOI: 10.1016/j.toxicon.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/07/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
In the present in vivo study the anticancer efficacy of the venoms from Androctonus crassicauda, Messobuthus eupeus and Hemiscorpius lepturus scorpions was investigated. In addition, we attempted to clarify whether the immune system is involved in this activity. Initially, the LD50 of the venoms from these scorpions were determined and their 0.1 and 0.2 LD50 were calculated. The toxicity of 0.1 and 0.2 LD50 was tested on healthy mice by daily SC administration of these venoms for 12 consecutive days. CT26 cells were inoculated by SC route in BALB/c mice to establish a sold tumor, and ten days later, the mice were treated with 0.1 and 0.2 LD50 doses of the venoms on daily basis for 12 consecutive days. The tumor volume was measured every 4 days. At day 13, the tumors from untreated-control and venom-treated groups were removed, weighed, and assessed by histopathological and immunohistochemical techniques. In addition, the levels of mRNA expression of IL-12, IFN-γ and IL-1β were measured by real-time PCR. All the venoms induced anticancer effects as evidenced by significant inhibition in tumor growth; significant increases in inflammatory and CD+-T cells and expression of mRNA IL-12 and IFN-γ in tumor microenvironment of venom-treated as compared to untreated-control. These findings demonstrated, for the first time, that sub-lethal doses of the venoms from these scorpions induce their in vivo anticancer effects by stimulating the immune system. Further studies, specifically designed to identify these active constituents are recommended.
Collapse
Affiliation(s)
- Neda Amirgholami
- Toxicology Research Centre, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sceinces, Ahvaz, Iran.
| | - Neda Sistani Karampour
- Toxicology Research Centre, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sceinces, Ahvaz, Iran.
| | - Ata Ghadiri
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | | - Mohamad Ghasemi Dehcheshmeh
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Hassan Pipelzadeh
- Toxicology Research Centre, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sceinces, Ahvaz, Iran.
| |
Collapse
|
6
|
Khemili D, Valenzuela C, Laraba-Djebari F, Hammoudi-Triki D. Differential effect of Androctonus australis hector venom components on macrophage K V channels: electrophysiological characterization. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:1-13. [PMID: 30006779 DOI: 10.1007/s00249-018-1323-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
Neurotoxins of scorpion venoms modulate ion channels. Voltage-gated potassium (KV) channels regulate the membrane potential and are involved in the activation and proliferation of immune cells. Macrophages are key components of the inflammatory response induced by scorpion venom. The present study was undertaken to investigate the effect of Androctonus australis hector (Aah) venom on KV channels in murine resident peritoneal macrophages. The cytotoxicity of the venom was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) -based assay and electrophysiological recordings were performed using the whole-cell patch clamp technique. High doses of Aah venom (50, 125, 250 and 500 µg/ml) significantly decreased cell viability, while concentrations of 0.1-25 µg/ml were not cytotoxic towards peritoneal macrophages. Electrophysiological data revealed a differential block of KV current between resting and LPS-activated macrophages. Aah venom significantly reduced KV current amplitude by 62.5 ± 4.78% (n = 8, p < 0.05), reduced the use-dependent decay of the current, decreased the degree of inactivation and decelerated the inactivation process of KV current in LPS-activated macrophages. Unlike cloned KV1.5 channels, Aah venom exerted a similar blocking effect on KV1.3 compared to KV current in LPS-activated macrophages, along with a hyperpolarizing shift in the voltage dependence of KV1.3 inactivation, indicating a direct mechanism of current inhibition by targeting KV1.3 subunits. The obtained results, demonstrating that Aah venom differentially targets KV channels in macrophages, suggest differential outcomes for their inhibitions, and that further investigations of scorpion venom immunomodulatory potential are required.
Collapse
Affiliation(s)
- Dalila Khemili
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Fatima Laraba-Djebari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria.
| | - Djelila Hammoudi-Triki
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| |
Collapse
|
7
|
Jimenez R, Ikonomopoulou MP, Lopez JA, Miles JJ. Immune drug discovery from venoms. Toxicon 2017; 141:18-24. [PMID: 29170055 DOI: 10.1016/j.toxicon.2017.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/22/2023]
Abstract
This review catalogues recent advances in knowledge on venoms as standalone therapeutic agents or as blueprints for drug design, with an emphasis on venom-derived compounds that affects the immune system. We discuss venoms and venom-derived compounds that affect total immune cell numbers, immune cell proliferation, immune cell migration, immune cell phenotype and cytokine secretion. Identifying novel compounds that 'tune' the system, up-regulating the immune response during infectious disease and cancer and down-regulating the immune response during autoimmunity, will greatly expand the tool kit of human immunotherapeutics. Targeting these pathways may also open therapeutic options that alleviate symptoms of envenomation. Finally, combining recent advances in venomics with progress in low cost, high-throughput screening platforms will no doubt yield hundreds of prototype immune modulating compounds in the coming years.
Collapse
Affiliation(s)
- Rocio Jimenez
- Griffith University, School of Natural Sciences, Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maria P Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Medicine, The University of Queensland, Brisbane, Australia; Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, Spain
| | - J Alejandro Lopez
- Griffith University, School of Natural Sciences, Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John J Miles
- Griffith University, School of Natural Sciences, Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Medicine, The University of Queensland, Brisbane, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.
| |
Collapse
|
8
|
Corzo G, Espino-Solis GP. Selected scorpion toxin exposures induce cytokine release in human peripheral blood mononuclear cells. Toxicon 2017; 127:56-62. [PMID: 28088477 DOI: 10.1016/j.toxicon.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023]
Abstract
A cytokine screening on human peripheral blood mononuclear cells (PBMCs) stimulated with selected scorpion toxins (ScTx's) was performed in order to evaluate their effect on human immune cells. The ScTx's chosen for this report were three typical buthid scorpion venom peptides, one with lethal effects on mammals Centruroides suffussus suffusus toxin II (CssII), another, with lethal effects on insects and crustaceans Centruroides noxius toxin 5 (Cn5), and one more without lethal effects Tityus discrepans toxin (Discrepin). A Luminex multiplex analysis was performed in order to determine the amounts chemokines and cytokines IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12-p40, IL-13, interferon alpha (IFN-α), interferon gamma (IFN-γ), tumor necrosis factor alpha TNF-α, and interferon-inducible protein-10 (IP-10) secreted from human PBMCs exposed to these toxins. Although, the ScTx Cn5 is not lethal for mammals, it was able to induce the secretion of cytokines IL-1β, IL-6, and TNF-α, IL-10 and IP-10 in comparison to the lethal CssII, which was able to induce only IP-10 secretion. Discrepin also was able to induce only IP-10. Interestingly, only low amounts of interferons α and β were induced in the presence of the ScTx's assayed. In a synergic experiment, the combination of Discrepin and Cn5 displayed considerable reverse effects on induction of IL-1β, IL-6, IL-10 and TNF-α, but they had a slight synergic effect on IP-10 cytokine production in comparison with the single effect obtained with the Cn5 alone. Thus, the results obtained suggest that the profile of secreted cytokines promoted by ScTx Cn5 is highly related with a cytokine storm event, and also it suggests that the mammalian lethal neurotoxins are not solely responsible of the scorpion envenomation symptomatology.
Collapse
Affiliation(s)
- Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | | |
Collapse
|
9
|
Khodadadi A, Abdoli Z, Boroujerdnia MG, Assarehzadegan MA, Ghasemi M, Hazrati SM, Gerdabi ND. The Effect of G2 Adjuvant on Gene Expression and Delivery of NKG2D Receptor on NK Cells in Peripheral Blood. Cancer Biother Radiopharm 2016; 31:119-24. [DOI: 10.1089/cbr.2015.1883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Ali Khodadadi
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Abdoli
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Mohammad Ghasemi
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saleh Mohaghegh Hazrati
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Dr. Mohaghegh's Foundation Research on Industrial Biotechnology, Tehran, Iran
| | - Nader Dashti Gerdabi
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Ait-Lounis A, Laraba-Djebari F. TNF-alpha modulates adipose macrophage polarization to M1 phenotype in response to scorpion venom. Inflamm Res 2015; 64:929-36. [PMID: 26403661 DOI: 10.1007/s00011-015-0876-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE We previously reported that Androctonus australis hector (Aah) venom and its toxic fraction affect adipose tissue metabolism. However, the contribution of immune system and the role of adipose tissue macrophages (ATMs) in the progression of inflammation induced by scorpion venom remain largely unknown. METHODS Here we evaluate the capacity of the toxic fraction of Aah venom (FTox-G50) to induce the expression of M1 and M2 markers genes on adipose tissue and isolated stromal vascular cells (SVC). Quantitative real-time PCR was performed on the SVC 24 h after FTox-G50 venom injection to assess the gene expressions of IL12p40, IL23, and other macrophages-associated markers. RESULTS We found that ATM from FTox-G50-venom-injected mice markedly increased the expressions of IL-12p40 and IL-23. Furthermore, the expression of nitric oxide synthase 2 (an M1 marker) was up-regulated, but the expression of Arginase1 (an M2 marker) was not. Systemic injection of a chemical inhibitor directed against TNF-α binding reduced the expression of inflammatory M1 macrophage markers and the MAPKpk2 gene, a key mediator of inflammatory signaling. CONCLUSION These results indicate that TNF-α is a physiological regulator of inflammation and macrophage activation induced by scorpion venom.
Collapse
Affiliation(s)
- Aouatef Ait-Lounis
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|