1
|
Ait Laaradia M, Laadraoui J, Ettitaou A, Agouram F, Oubella K, Moubtakir S, Aboufatima R, Chait A. Variation in venom yield, protein concentration and regeneration toxicity in the scorpion Buthus lienhardi. Toxicon 2025; 255:108254. [PMID: 39862930 DOI: 10.1016/j.toxicon.2025.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Scorpion venom research aims to develop treatments for dangerous species and identify candidates for new drugs. The extraction of high-quality venom, which is essential, requires mastery of the extraction and maintenance of scorpions. It is in this perspective that we have undertaken this present work which aims to contribute to scientifically mastering venom yields and the factors that influence them in scorpions. Two experiments were conducted. In the first, the volume yield and protein concentration of venom from 121 Buthus lienhardi scorpions were examined according to their size, sex, mass and place of origin. In the second experiment, the quality and quantity of venom regenerated over 30 days after extraction were measured on 80 scorpions, with samples collected at different time points (8 H, 16 H, 24 H, 32 H, 48 H, 3 days (D), 7 D, 11 D, 15 D and 30 D). In addition, the toxicity of venom samples collected from mice at different stages was evaluated. The volume of venom extracted by electrical stimulation was linearly related to body length. Body length and protein concentration were not correlated. When considering the multiple influences on production volume in Buthus lienhardi, the most important factor was body length, but volume was also positively associated with mesosome length and relative body mass. Male scorpions produced a greater volume of venom with a higher protein concentration than females. For venom regeneration, the volume of venom extracted after depletion showed a significant increase over the days, reaching a complete recovery by day 11. In contrast, protein regeneration and toxicity were slower than that of volume, with a complete recovery observed by day 15. This study should lead to the design of better venom extraction protocols for several studies such as treatment development, basic research and especially for drug development.
Collapse
Affiliation(s)
- Mehdi Ait Laaradia
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco; Higher Institute of Nursing Professions and Health Techniques, Ministry of Health and Social Protection, Beni Mellal, Morocco.
| | - Jawad Laadraoui
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco; Laboratory of Physiopathology, Genetic Molecular and Biotechnology, Faculty of Sciences, Aïn Chock, Hassan II University, Casablanca, Morocco
| | - Amina Ettitaou
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Fatimzahra Agouram
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Khadija Oubella
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Soad Moubtakir
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Rachida Aboufatima
- Laboratory of Biological Engineering, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| |
Collapse
|
2
|
Ajdi B, El Asbahani A, El Hidan MA, Bocquet M, Falconnet L, Ait Hamza M, Elmourid A, Touloun O, Boubaker H, Bulet P. Molecular diversity assessed by MALDI mass spectrometry of two scorpion species venom from two different locations in Morocco. Toxicon 2024; 238:107562. [PMID: 38103799 DOI: 10.1016/j.toxicon.2023.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Scorpion venom is a cocktail of molecules whose composition is remarkably plastic, controlled by several factors. The Moroccan scorpion fauna is characterized by its richness and high rate of endemism and the venom molecular variability of many species is not yet well characterized. The aim of the present study was to highlight the molecular variability of the venom composition of Androctonus amoreuxi and Buthacus stockmanni (endemic species), both belonging to the Buthidae family, collected from two Moroccan regions, Zagora and Tan-tan. Characterization of the molecular mass fingerprints (MFPs) of each specimen was performed by Matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) using a sandwich (Sand) and a dried-droplet (DD) sample preparation and dilutions. Considering these two methods, a total of 828 ion signals were detected, and Sand method produced more adducts (56%) than DD (44%). We observed interspecific variations in the venom composition between these two species showing they share 235 ion signals, while 226 and 367 are specific for these two species, respectively. Moreover, B. stockmanni specimens showed a clear difference in their MFPs between the two geographical areas studied, suggesting intraspecific variations. Moreover, specimens from each population also show an intraspecific variability. In addition, for the same individual, a variation in the venom composition was also recorded depending on the milking frequency. Our results confirmed the presence of characteristic components in each extracted venom sample. In conclusion, MFPs assessed by MALDI-MS represent a fast, non-supervised, sensitive, reliable and cost-efficient approach for taxonomic identification and molecular variability characterization. This study undoubtedly represents a step forward for understanding the scorpion venom plasticity, intra/inter variations, and their temporal and geographical variability.
Collapse
Affiliation(s)
- Boujemaa Ajdi
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco; Institute for Advanced Biosciences, CR Inserm U1209, CNRSUMR 5309, University of Grenoble-Alpes, 38000, Grenoble, France; Platform BioPark Archamps, 74160, Archamps, France.
| | - Abdelhafed El Asbahani
- Applied Chemistry and Environment Laboratory, Team of Bio-organic Chemistry and Natural Substances, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco.
| | - Moulay Abdelmonaim El Hidan
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Applied Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Michel Bocquet
- Platform BioPark Archamps, 74160, Archamps, France; Apimedia, 74370, Annecy, France
| | | | - Mohamed Ait Hamza
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Applied Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Abdessamad Elmourid
- Polyvalent Team in Research and Development (EPVRD), Department of Biology & Geology, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, 23030, Morocco.
| | - Oulaid Touloun
- Polyvalent Team in Research and Development (EPVRD), Department of Biology & Geology, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, 23030, Morocco.
| | - Hassan Boubaker
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco.
| | - Philippe Bulet
- Institute for Advanced Biosciences, CR Inserm U1209, CNRSUMR 5309, University of Grenoble-Alpes, 38000, Grenoble, France; Platform BioPark Archamps, 74160, Archamps, France.
| |
Collapse
|
3
|
Yglesias-Rivera A, Sánchez-Rodríguez H, Soto-Febles C, Monzote L. Heteroctenus junceus Scorpion Venom Modulates the Concentration of Pro-Inflammatory Cytokines in F3II Tumor Cells. Life (Basel) 2023; 13:2287. [PMID: 38137888 PMCID: PMC10871110 DOI: 10.3390/life13122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The ability of Heteroctenus junceus scorpion venom to modulate the concentration of cytokines related to its antitumoral effect is unknown. F3II cells were treated with ¼ IC50, ½ IC50 and the IC50 of H. junceus scorpion venom. Tumor growth kinetics in F3II-bearing mice were evaluated after 24 days of oral administration of venom doses. The effect of tumor lysates on F3II cell viability was evaluated by MTT assay, while cytokines present in each sample were determined by ELISA. In supernatant, H. junceus scorpion venom decreased the concentration of IL-6 (p < 0.001), IFN-γ (p < 0.001), IL-1β (p < 0.01); meanwhile IL-12 (p < 0.001) and TNF-α (p < 0.001) levels increased significantly, according to the concentration and the time of incubation. Heteroctenus junceus scorpion venom effectively inhibits in vivo tumor progression. In the sera, a significant decrease was observed in TNF-α levels (p < 0.05). In tumor lysates, IL-6 decreased significantly in the groups treated with 12.5 mg/kg (p < 0.001) and 25 mg/kg (p < 0.05). Heteroctenus junceus scorpion venom is capable of modulating other proinflammatory and protumoral cytokines involved in the inflammation associated with cancer.
Collapse
Affiliation(s)
- Arianna Yglesias-Rivera
- Research Department, Laboratories of Biopharmaceutical and Chemistry Productions (LABIOFAM), Ave. Independencia Km 16 1/2, Santiago de las Vegas, Boyeros, La Habana 10800, Cuba
| | - Hermis Sánchez-Rodríguez
- Microbiology Department, Institute of Tropical Medicine “Pedro Kouri”, Autopista Novia del Mediodía Km 6 1/2, La Lisa, La Habana 17100, Cuba;
| | - Carmen Soto-Febles
- Center for Protein Studies, Biology Faculty, University of Havana, Calle 25 Entre J e I, # 455, Plaza de la Revolución, La Habana 10400, Cuba;
| | - Lianet Monzote
- Microbiology Department, Institute of Tropical Medicine “Pedro Kouri”, Autopista Novia del Mediodía Km 6 1/2, La Lisa, La Habana 17100, Cuba;
| |
Collapse
|
4
|
Hilal I, Khourcha S, Safi A, Hmyene A, Asnawi S, Othman I, Stöcklin R, Oukkache N. Comparative Proteomic Analysis of the Venoms from the Most Dangerous Scorpions in Morocco: Androctonus mauritanicus and Buthus occitanus. Life (Basel) 2023; 13:life13051133. [PMID: 37240778 DOI: 10.3390/life13051133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Morocco is known to harbor two of the world's most dangerous scorpion species: the black Androctonus mauritanicus (Am) and the yellow Buthus occitanus (Bo), responsible for 83% and 14% of severe envenomation cases, respectively. Scorpion venom is a mixture of biological molecules of variable structures and activities, most of which are proteins of low molecular weights referred to as toxins. In addition to toxins, scorpion venoms also contain biogenic amines, polyamines, and enzymes. With the aim of investigating the composition of the Am and Bo venoms, we conducted an analysis of the venoms by mass spectrometry (ESI-MS) after separation by reversed-phase HPLC chromatography. Results from a total of 19 fractions obtained for the Am venom versus 22 fractions for the Bo venom allowed the identification of approximately 410 and 252 molecular masses, respectively. In both venoms, the most abundant toxins were found to range between 2-5 kDa and 6-8 kDa. This proteomic analysis not only allowed the drawing of an extensive mass fingerprint of the Androctonus mauritanicus and Buthus occitanus venoms but also provided a better insight into the nature of their toxins.
Collapse
Affiliation(s)
- Ines Hilal
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Techniques of Mohammedia, Mohammedia 20650, Morocco
| | - Soukaina Khourcha
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Techniques of Mohammedia, Mohammedia 20650, Morocco
| | - Amal Safi
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Techniques of Mohammedia, Mohammedia 20650, Morocco
| | - Abdelaziz Hmyene
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Techniques of Mohammedia, Mohammedia 20650, Morocco
| | - Syafiq Asnawi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Reto Stöcklin
- Atheris Laboratories, Case Postale 314, CH-1233 Bernex, Geneva, Switzerland
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
| |
Collapse
|
5
|
Yang Y, Zhu Y, Luo Y, Liu Q, Hua X, Li J, Gao F, Hofer J, Gao X, Xiao L, Song X, Gao S, Hao R. Transcriptome analysis of Mesobuthus martensii revealed the differences of their toxins between females and males. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2143584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Y. Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| | - Y. Zhu
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Y. Luo
- Central Medical District of Chinese PLA General Hospital, Beijing, China
| | - Q. Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| | - X. Hua
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - J. Li
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - F. Gao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - J. Hofer
- Instituto de Ciencias Marinas Y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - X. Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| | - L. Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - X. Song
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - S. Gao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - R. Hao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| |
Collapse
|
6
|
Krämer J, Pommerening R, Predel R. Equipped for Sexual Stings? Male-Specific Venom Peptides in Euscorpius italicus. Int J Mol Sci 2022; 23:ijms231911020. [PMID: 36232328 PMCID: PMC9570025 DOI: 10.3390/ijms231911020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
In the animal kingdom, intraspecific variation occurs, for example, between populations, different life stages, and sexes. For venomous animals, this can involve differences in their venom composition. In cases where venom is utilized in the context of mating, the differences in composition might be driven by sexual selection. In this regard, the genus Euscorpius is a promising group for further research, as some of these scorpions exhibit a distinct sexual dimorphism and are known to perform a sexual sting during mating. However, the venom composition of this genus remains largely unexplored. Here, we demonstrate that Euscorpius italicus exhibits a male-specific venom composition, and we identify a large fraction of the substances involved. The sex specificity of venom peptides was first determined by analyzing the presence/absence patterns of ion signals in MALDI-TOF mass spectra of venom samples from both sexes and juveniles. Subsequently, a proteo-transcriptomic analysis provided sequence information on the relevant venom peptides and their corresponding precursors. As a result, we show that several potential toxin precursors are down-regulated in male venom glands, possibly to reduce toxic effects caused to females during the sexual sting. We have identified the precursor of one of the most prominent male-specific venom peptides, which may be an ideal candidate for activity tests in future studies. In addition to the description of male-specific features in the venom of E. italicus, this study also includes a general survey of venom precursors in this species.
Collapse
|
7
|
Marchi FC, Mendes-Silva E, Rodrigues-Ribeiro L, Bolais-Ramos LG, Verano-Braga T. Toxinology in the proteomics era: a review on arachnid venom proteomics. J Venom Anim Toxins Incl Trop Dis 2022; 28:20210034. [PMID: 35291269 PMCID: PMC8893269 DOI: 10.1590/1678-9199-jvatitd-2021-0034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
The word venomics was coined to acknowledge the studies that use omics to investigate venom proteins and peptides. Venomics has evolved considerably over the last 20 years. The first works on scorpion or spider venomics were published in the early 2000's. Such studies relied on peptide mass fingerprinting (PMF) to characterize venom complexity. After the introduction of new mass spectrometers with higher resolution, sensitivity and mass accuracy, and the next-generation nucleotide sequencing, the complexity of data reported in research on scorpion and spider venomics increased exponentially, which allowed more comprehensive studies. In the present review article, we covered key publications on scorpion venomics and spider venomics, presenting historical grounds and implemented technologies over the last years. The literature presented in this review was selected after searching the PubMed database using the terms "(scorpion venom) AND (proteome)" for scorpion venomics, and "(spider venom) AND (proteome)" for publications on spider venomics. We presented the key aspects related to proteomics in the covered papers including, but not restricted to, the employed proteomic strategy (i.e., PMF, two-dimensional gel electrophoresis, shotgun/bottom-up and/or top-down/peptidome), and the type of mass spectrometer used. Some conclusions can be drawn from the present study. For example, the scorpion genus Tityus is the most studied concerning venomics, followed by Centruroides; whereas for spiders the studied genera were found more equally distributed. Another interesting conclusion is the lack of high throughput studies on post-translational modifications (PTMs) of scorpion and spider proteins. In our opinion, PTMs should be more studied as they can modulate the activity of scorpion and spider toxins.
Collapse
Affiliation(s)
- Filipi Calbaizer Marchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Edneia Mendes-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Gabriel Bolais-Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Simone Y, van der Meijden A. Armed stem to stinger: a review of the ecological roles of scorpion weapons. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210002. [PMID: 34527038 PMCID: PMC8425188 DOI: 10.1590/1678-9199-jvatitd-2021-0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Scorpions possess two systems of weapons: the pincers (chelae) and the stinger (telson). These are placed on anatomically and developmentally well separated parts of the body, that is, the oral appendages and at the end of the body axis. The otherwise conserved body plan of scorpions varies most in the shape and relative dimensions of these two weapon systems, both across species and in some cases between the sexes. We review the literature on the ecological function of these two weapon systems in each of three contexts of usage: (i) predation, (ii) defense and (iii) sexual contests. In the latter context, we will also discuss their usage in mating. We first provide a comparative background for each of these contexts of usage by giving examples of other weapon systems from across the animal kingdom. Then, we discuss the pertinent aspects of the anatomy of the weapon systems, particularly those aspects relevant to their functioning in their ecological roles. The literature on the functioning and ecological role of both the chelae and the telson is discussed in detail, again organized by context of usage. Particular emphasis is given on the differences in morphology or usage between species or higher taxonomic groups, or between genders, as such cases are most insightful to understand the roles of each of the two distinct weapon systems of the scorpions and their evolutionary interactions. We aimed to synthesize the literature while minimizing conjecture, but also to point out gaps in the literature and potential future research opportunities.
Collapse
Affiliation(s)
- Yuri Simone
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Porto, Portugal
| | - Arie van der Meijden
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Porto, Portugal
| |
Collapse
|
9
|
Magalhães ACM, de Santana CJC, Melani RD, Domont GB, Castro MS, Fontes W, Roepstorff P, Júnior ORP. Exploring the biological activities and proteome of Brazilian scorpion Rhopalurus agamemnon venom. J Proteomics 2021; 237:104119. [PMID: 33540062 DOI: 10.1016/j.jprot.2021.104119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Scorpion venoms are formed by toxins harmful to various organisms, including humans. Several techniques have been developed to understand the role of proteins in animal venoms, including proteomics approach. Rhopalurus agamemnon (Koch, 1839) is the largest scorpion in the Buthidae family in the Brazilian Cerrado, measuring up to 110 mm in total length. The accident with R. agamemnon is painful and causes some systemic reactions, but the specie's venom remains uninvestigated. We explore the venom protein composition using a proteomic and a biological-directed approach identifying 230 protein compounds including enzymes like Hyaluronidase, metalloproteinase, L-amino acid oxidase and amylase, the last two are first reported for scorpion venoms. Some of those new reports are important to demonstrate how distant we are from a total comprehension of the diversity about venoms in general, due to their diversity in composition and function. BIOLOGICAL SIGNIFICANCE: In this study, we explored the composition of venom proteins from the scorpion Rhopalurus agamemnon. We identified 230 proteins from the venom including new enzyme reports. These data highlight the unique diversity of the venom proteins from the scorpion R. agamemnon, provide insights into new mechanisms of envenomation and enlarge the protein database of scorpion venoms. The discovery of new proteins provides a new scenario for the development of new drugs and suggests molecular targets to venom components.
Collapse
Affiliation(s)
- Ana Carolina Martins Magalhães
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil.
| | - Carlos José Correia de Santana
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Rafael D Melani
- Proteomic Laboratory, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomic Laboratory, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S Castro
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Osmindo Rodrigues Pires Júnior
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| |
Collapse
|
10
|
Dioguardi M, Caloro GA, Laino L, Alovisi M, Sovereto D, Crincoli V, Aiuto R, Dioguardi A, De Lillo A, Troiano G, Lo Muzio L. Therapeutic Anticancer Uses of the Active Principles of " Rhopalurus junceus" Venom. Biomedicines 2020; 8:biomedicines8100382. [PMID: 32992456 PMCID: PMC7600222 DOI: 10.3390/biomedicines8100382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
The Rhopalurus junceus is a scorpion belonging to the Buthidae family that finds its habitat in Cuba. This scorpion is known by the common name of "Blue Scorpion". The venom is used on the island of Cuba as an alternative cure for cancer and, more recently, in the research of active components for biomedicine. Recently, the venom has been tested in several studies to investigate its effects on cancer cell lines, and the initial results of in vitro studies demonstrated how this poison can be effective on certain carcinoma cell lines (Hela, SiHa, Hep-2, NCI-H292, A549, MDA-MB-231, MDA-MB-468, and HT-29). The aim of this review is, therefore, to describe the effects of the venom on carcinoma lines and to investigate all anti-cancer properties studied in the literature. The research was conducted using four databases, Pub Med, Scopus, EBSCO, and Web of Science, through the use of keywords, by two independent reviewers following the PRISMA protocol, identifying 57 records. The results led to a total of 13 articles that met the eligibility criteria. The data extracted for the purpose of meta-analysis included the IC50 of the venom on carcinoma cell lines. The results of the meta-analysis provided a pooled mean of the IC50 of 0.645 mg/mL (95% CI: 0.557, 0.733), with a standard error (SE) = 0.045, p < 0.001. The analysis of the subgroups, differentiated by the type of cell line used, provided insight regarding how the scorpion venom was effective on the cell lines of lung origin (NCI-H292, A549, and MRC-5) with a pooled mean of IC50 0.460 mg/mL (95% CI: 0.290, 0.631) SE (0.087) p < 0.001. The results described in the literature for in vitro studies are encouraging, and further investigations should be carried out and deepened.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (A.D.); (A.D.L.); (G.T.); (L.L.M.)
- Correspondence:
| | - Giorgia Apollonia Caloro
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari, Via Piazza Giulio Cesare, 70124 Bari, Italy;
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy;
| | - Mario Alovisi
- Department of Surgical Sciences, Dental School, University of Turin, 10127 Turin, Italy;
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (A.D.); (A.D.L.); (G.T.); (L.L.M.)
| | - Vito Crincoli
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Division of Complex Operating Unit of Dentistry, “Aldo Moro” University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Riccardo Aiuto
- Department of Biomedical, Surgical, and Dental Science, University of Milan, 20122 Milan, Italy;
| | - Antonio Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (A.D.); (A.D.L.); (G.T.); (L.L.M.)
| | - Alfredo De Lillo
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (A.D.); (A.D.L.); (G.T.); (L.L.M.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (A.D.); (A.D.L.); (G.T.); (L.L.M.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (A.D.); (A.D.L.); (G.T.); (L.L.M.)
| |
Collapse
|
11
|
Monteiro dos Santos J, Cardoso dos Santos J, Marques EE, Araújo GCD, Seibert CS, Lopes-Ferreira M, Lima C. Stingray (Potamotrygon rex) maturity is associated with inflammatory capacity of the venom. Toxicon 2019; 163:74-83. [DOI: 10.1016/j.toxicon.2019.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
|
12
|
Ward MJ, Ellsworth SA, Hogan MP, Nystrom GS, Martinez P, Budhdeo A, Zelaya R, Perez A, Powell B, He H, Rokyta DR. Female-biased population divergence in the venom of the Hentz striped scorpion (Centruroides hentzi). Toxicon 2018; 152:137-149. [PMID: 30096334 DOI: 10.1016/j.toxicon.2018.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/27/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
Abstract
Sex-biased genes are expressed at higher levels in one sex and contribute to phenotypic differences between males and females, as well as overall phenotypic variation within and among populations. Venom has evolved primarily for predation and defense, making venom expression a highly variable phenotype as a result of local adaptation. Several scorpion species have shown both intraspecific and intersexual venom variation, and males have been observed using venom in courtship and mating, suggesting the existence of venom-specific, sex-biased genes that may contribute to population divergence. We used reversed-phase high-performance liquid chromatography (RP-HPLC), Agilent protein bioanalyzer chips, nano-liquid chromatography mass spectrometry (nLC/MS/MS), and median lethal dose (LD50) assays in fruit flies (Drosophila melanogaster) and banded crickets (Gryllodes sigillatus) to investigate proteomic and functional venom variation within and among three Florida populations of the Hentz striped scorpion (Centruroides hentzi). We found significant venom variation among populations, with females, not males, being responsible for this divergence. We also found significant variation in venom expression within populations, with males contributing more to within population variation than females. Our results provide evidence that male and female scorpions experience different natural and sexual selective pressures that have led to the expression of sex-biased venom genes and that these genes may be consequential in population divergence.
Collapse
Affiliation(s)
- Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Paul Martinez
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Amisha Budhdeo
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Roxana Zelaya
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Alexander Perez
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Barclay Powell
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Huan He
- Institute of Molecular Biophysics and College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
13
|
Ward MJ, Ellsworth SA, Rokyta DR. Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family. Toxicon 2018; 142:14-29. [DOI: 10.1016/j.toxicon.2017.12.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/02/2023]
|
14
|
Miyashita M, Kitanaka A, Yakio M, Yamazaki Y, Nakagawa Y, Miyagawa H. Complete de novo sequencing of antimicrobial peptides in the venom of the scorpion Isometrus maculatus. Toxicon 2017; 139:1-12. [DOI: 10.1016/j.toxicon.2017.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/30/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
|
15
|
Sentenská L, Graber F, Richard M, Kropf C. Sexual dimorphism in venom gland morphology in a sexually stinging scorpion. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
16
|
Emerich BL, De Lima ME, Martin-Eauclaire MF, Bougis PE. Comparative analyses and implications for antivenom serotherapy of four Moroccan scorpion Buthus occitanus venoms: Subspecies tunetanus, paris, malhommei, and mardochei. Toxicon 2017; 149:26-36. [PMID: 28712915 DOI: 10.1016/j.toxicon.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 01/14/2023]
Abstract
Temporary passive immunity such as serotherapy against venoms requires the full knowledge of all venom's components. Here, four venoms from Moroccan common yellow scorpions belonging to Buthus occitanus, subspecies tunetanus, paris, malhommei, and mardochei, all collected in four different restricted areas, were analysed in deep. They were fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) and their molecular masse profile determined by off-line MALDI-TOF mass spectrometry. Characterisation of their main components was achieved by enzyme-linked immunosorbent assay (ELISA) using specific antisera against the major lethal scorpion toxins identified so far, i.e. voltage-gated sodium channels (Nav) modulators α- and β-toxins, as well as diverse potassium channel pore blocker toxins. For fractions with identical RP-HPLC retention times, we observe that their relative quantities show large differences. Moreover, identical masses present simultaneously in the four venoms are infrequent. ELISAs show that the majority of the RP-HPLC compounds cross-react with the antiserum against the "α-like" toxin Bot I, which has been previously identified in the Algerian Buthus occitanus tunetanus venom. Moreover, minor fractions were recognised by the antiserum against the highly lethal "classical" α-toxin of reference AaH II from the Androctonus australis venom. As such, our results bring new sights for further improving scorpion venom serotherapy in Morocco.
Collapse
Affiliation(s)
- Bruna Luiza Emerich
- Aix Marseille Université, CNRS, CRN2M UMR7286, 13344, Marseille, France; Laboratório de Venenos e Toxinas Animais, Dept de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo-Horizonte, MG, Brazil
| | - Maria Elena De Lima
- Laboratório de Venenos e Toxinas Animais, Dept de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo-Horizonte, MG, Brazil
| | | | - Pierre E Bougis
- Aix Marseille Université, CNRS, CRN2M UMR7286, 13344, Marseille, France.
| |
Collapse
|
17
|
Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130:91-103. [PMID: 28242227 DOI: 10.1016/j.toxicon.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Currently, new antimicrobial molecules extracted or obtained by natural sources, could be a valide alternative to traditional antibiotics. Most of these molecules are represented by antimicrobial peptides (AMPs), which are essential compounds of insect, arachnids and centipedes venom. AMPs, due to their strong effectiveness, low resistance rates and peculiar mode of action, seem to have all the suitable features to be a powerful weapon against several bacteria, especially considering the increasing antibiotic-resistance phenomena. The present literature review focuses on the antibacterial activity of bee, wasp, ant, scorpion, spider and scolopendra crude venom and of their main biological active compounds. After a brief overview of each animal and venom use in folkloristic medicine, this review reports, in a comprehensive table, the results obtained by the most relevant and recent researches carried out on the antibacterial activity of different venom and their AMPs. For each considered study, the table summarizes data concerning minimal inhibitory concentration values, minimal bactericidal concentration values, the methods employed, scientific name and common names and provenience of animal species from which the crude venom and its respective compounds were obtained.
Collapse
|
18
|
Cid Uribe JI, Jiménez Vargas JM, Ferreira Batista CV, Zamudio Zuñiga F, Possani LD. Comparative proteomic analysis of female and male venoms from the Mexican scorpion Centruroides limpidus: Novel components found. Toxicon 2017; 125:91-98. [DOI: 10.1016/j.toxicon.2016.11.256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
19
|
Miller DW, Jones AD, Goldston JS, Rowe MP, Rowe AH. Sex Differences in Defensive Behavior and Venom of The Striped Bark Scorpion Centruroides vittatus (Scorpiones: Buthidae). Integr Comp Biol 2016; 56:1022-1031. [PMID: 27471227 DOI: 10.1093/icb/icw098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Studies of venom variability have advanced from describing the mechanisms of action and relative potency of medically important toxins to understanding the ecological and evolutionary causes of the variability itself. While most studies have focused on differences in venoms among taxa, populations, or age-classes, there may be intersexual effects as well. Striped bark scorpions (Centruroides vittatus) provide a good model for examining sex differences in venom composition and efficacy, as this species exhibits dramatic sexual dimorphism in both size and defensive behavior; when threatened by an enemy, larger, slower females stand and fight while smaller, fleeter males prefer to run. We here add evidence suggesting that male and female C. vittatus indeed have different defensive propensities; when threatened via an electrical stimulus, females were more likely to sting than were males. We reasoned that intersexual differences in defensive phenotypes would select for venoms with different functions in the two sexes; female venoms should be effective at predator deterrence, whereas male venoms, less utilized defensively, might be better suited to capturing prey or courting females. This rationale led to our predictions that females would inject more venom and/or possess more painful venom than males. We were wrong. While females do inject more venom than males in a defensive sting, females are also larger; when adjusted for body size, male and female C. vittatus commit equal masses of venom in a sting to a potential enemy. Additionally, house mice (Mus musculus) find an injection of male venom more irritating than an equal amount of female venom, likely because male venom contains more of the toxins that induce pain. Taken together, our results suggest that identifying the ultimate causes of venom variability will, as we move beyond adaptive storytelling, be hard-won.
Collapse
Affiliation(s)
- D W Miller
- *Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - A D Jones
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - J S Goldston
- *Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - M P Rowe
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A H Rowe
- Neuroscience Program and Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins (Basel) 2016; 8:E226. [PMID: 27455327 PMCID: PMC4999844 DOI: 10.3390/toxins8080226] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| | - Mireia Solà
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Emma Christine Jappe
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Line Præst Lauridsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
21
|
Lopes-Ferreira M, Sosa-Rosales I, Bruni FM, Ramos AD, Vieira Portaro FC, Conceição K, Lima C. Analysis of the intersexual variation in Thalassophryne maculosa fish venoms. Toxicon 2016; 115:70-80. [DOI: 10.1016/j.toxicon.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 01/20/2023]
|
22
|
Oldrati V, Arrell M, Violette A, Perret F, Sprüngli X, Wolfender JL, Stöcklin R. Advances in venomics. MOLECULAR BIOSYSTEMS 2016; 12:3530-3543. [DOI: 10.1039/c6mb00516k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The term “venomics” was coined to describe the global study of venom and venom glands, targeting comprehensive characterization of the whole toxin profile of a venomous animal by means of proteomics, transcriptomics, genomics and bioinformatics studies.
Collapse
Affiliation(s)
- Vera Oldrati
- Atheris SA
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
- EPGL
| | | | - Aude Violette
- Alphabiotoxine Laboratory Sprl
- Montroeul-au-Bois B-7911
- Belgium
| | | | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences
- EPGL
- University of Geneva
- University of Lausanne
- CMU
| | | |
Collapse
|
23
|
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|