1
|
Thakur S, Blotra A, Vasudevan K, Malhotra A, Lalremsanga HT, Santra V, Doley R. Proteome Decomplexation of Trimeresurus erythrurus Venom from Mizoram, India. J Proteome Res 2023; 22:215-225. [PMID: 36516484 DOI: 10.1021/acs.jproteome.2c00642] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Green pit vipers are the largest group of venomous vipers in tropical and subtropical Asia, which are responsible for most of the bite cases across this region. Among the green pit vipers of the Indian subcontinent, Trimeresurus erythrurus is the most prevalent; however, limited knowledge is available about its venomics. Proteome decomplexation of T. erythrurus venom using mass spectrometry revealed a blend of 53 different proteins/peptides belonging to 10 snake venom protein families. Phospholipase A2 and snake venom serine proteases were found to be the major enzymatic families, and Snaclec was the major nonenzymatic family in this venom. These protein families might be responsible for consumptive coagulopathy in victims. Along with these, snake venom metalloproteases, l-amino acid oxidases, disintegrins, and cysteine-rich secretory proteins were also found, which might be responsible for inducing painful edema, tissue necrosis, blistering, and defibrination in patients. Protein belonging to C-type lectins, C-type natriuretic peptides, and glutaminyl-peptide cyclotransfreases were also observed as trace proteins. The crude venom shows platelet aggregation in the absence of any agonist, suggesting their role in alterations in platelet functions. This study is the first proteomic analysis of T. erythrurus venom, contributing an overview of different snake venom proteins/peptides responsible for various pathophysiological disorders obtained in patients. Data are available via ProteomeXchange with the identifier PXD038311.
Collapse
Affiliation(s)
- Susmita Thakur
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, Napaam784028, India
| | - Avni Blotra
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad500048, India
| | - Karthikeyan Vasudevan
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad500048, India
| | - Anita Malhotra
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, BangorLL57 2UW, Gwynedd, U.K
| | - Hmar Tlawmte Lalremsanga
- Developmental Biology and Herpetology Laboratory, Department of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| | - Vishal Santra
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, West Bengal712407, India.,Captive and Field Herpetology, 13 Hirfron, AngleseyLL65 1YU, Wales, U.K.,Gujarat Forest Department, Consultant - Snake Research Institute, Dharampur, Valsad, Gujarat396050, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, Napaam784028, India
| |
Collapse
|
2
|
Diversity of Phospholipases A2 from Bothrops atrox Snake Venom: Adaptive Advantages for Snakes Compromising Treatments for Snakebite Patients. Toxins (Basel) 2022; 14:toxins14080543. [PMID: 36006204 PMCID: PMC9414272 DOI: 10.3390/toxins14080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
The evolution of snake venoms resulted in multigene toxin families that code for structurally similar isoforms eventually harboring distinct functions. PLA2s are dominant toxins in viper venoms, and little is known about the impact of their diversity on human envenomings and neutralization by antivenoms. Here, we show the isolation of three distinct PLA2s from B. atrox venom. FA1 is a Lys-49 homologue, and FA3 and FA4 are catalytic Asp-49 PLA2s. FA1 and FA3 are basic myotoxic proteins, while FA4 is an acid non-myotoxic PLA2. FA3 was the most potent toxin, inducing higher levels of edema, inflammatory nociception, indirect hemolysis, and anticoagulant activity on human, rat, and chicken plasmas. FA4 presented lower anticoagulant activity, and FA1 had only a slight effect on human and rat plasmas. PLA2s presented differential reactivities with antivenoms, with an emphasis on FA3, which was not recognized or neutralized by the antivenoms used in this study. Our findings reveal the functional and antigenic diversity among PLA2s from B. atrox venom, highlighting the importance of assessing venom variability for understanding human envenomations and treatment with antivenoms, particularly evident here as the antivenom fails to recognize FA3, the most active multifunctional toxin described.
Collapse
|
3
|
Suranse V, Jackson TNW, Sunagar K. Contextual Constraints: Dynamic Evolution of Snake Venom Phospholipase A 2. Toxins (Basel) 2022; 14:toxins14060420. [PMID: 35737081 PMCID: PMC9231074 DOI: 10.3390/toxins14060420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Venom is a dynamic trait that has contributed to the success of numerous organismal lineages. Predominantly composed of proteins, these complex cocktails are deployed for predation and/or self-defence. Many non-toxic physiological proteins have been convergently and recurrently recruited by venomous animals into their toxin arsenal. Phospholipase A2 (PLA2) is one such protein and features in the venoms of many organisms across the animal kingdom, including snakes of the families Elapidae and Viperidae. Understanding the evolutionary history of this superfamily would therefore provide insight into the origin and diversification of venom toxins and the evolution of novelty more broadly. The literature is replete with studies that have identified diversifying selection as the sole influence on PLA2 evolution. However, these studies have largely neglected the structural/functional constraints on PLA2s, and the ecology and evolutionary histories of the diverse snake lineages that produce them. By considering these crucial factors and employing evolutionary analyses integrated with a schema for the classification of PLA2s, we uncovered lineage-specific differences in selection regimes. Thus, our work provides novel insights into the evolution of this major snake venom toxin superfamily and underscores the importance of considering the influence of evolutionary and ecological contexts on molecular evolution.
Collapse
Affiliation(s)
- Vivek Suranse
- Evolutionary Venomics Laboratory, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India;
| | - Timothy N. W. Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Kartik Sunagar
- Evolutionary Venomics Laboratory, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India;
- Correspondence: ; Tel.: +91-080-2293-2895
| |
Collapse
|
4
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Thakur S, Malhotra A, Giri S, Lalremsenga HT, Bharti OK, Santra V, Martin G, Doley R. Venom of several Indian green pit vipers: Comparison of biochemical activities and cross-reactivity with antivenoms. Toxicon 2022; 210:66-77. [PMID: 35217025 DOI: 10.1016/j.toxicon.2022.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
Green pit vipers, a name that can refer to several unrelated species, comprise a large group of venomous snakes found across the humid areas of tropical and sub-tropical Asia, and are responsible for most of the bite cases across this region. In India, green pit vipers belonging to several genera are prevalent in the northern and north-eastern hilly region, unrelated to species present in the peninsular region. In the present study, crude venom of representative species of green pit vipers present in the north and north-eastern hilly region of India (Trimeresurus erythrurus, T. septentrionalis, Viridovipera medoensis, and Popiea popieorum) were characterized to elucidate venom composition and venom variation. Profiling of crude venoms using SDS-PAGE and RP-HPLC methods revealed quantitative differences among the species. Further, in vitro biochemical assays reveal variable levels of phospholipase activity, coagulation activity, thrombin-like activity, fibrinogenolytic and haemolytic activity. This correlates with the pseudo-procoagulant effects on the haemostatic system of victims, which causes consumptive coagulopathy, frequently observed in patients bitten by green pit vipers. The immunoreactivity of Indian polyvalent antivenom and Thai green pit viper antivenom towards crude venoms were also evaluated by western blotting and inhibition of biochemical activities. The results exhibited poor efficacy of Indian polyvalent antivenom in neutralizing the venom toxins of crude venoms; however, Thai green pit viper antivenin (raised against the venom of Trimeresurus allbolabris, not present in India) showed higher immunoreactivity towards congeneric venoms tested. Analysis of green pit viper bite patients records from a community health centre in Assam, India, further revealed the inability of Indian polyvalent antivenom to reverse the extended coagulopathy featured.
Collapse
Affiliation(s)
- Susmita Thakur
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Anita Malhotra
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Surajit Giri
- Demow Government Community Health Centre, Raichai, KonwarDihingia Gaon, Sivasagar, Assam, India
| | - H T Lalremsenga
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Omesh K Bharti
- State Institute of Health & Family Welfare Parimahal, Shimla, HP, India
| | - Vishal Santra
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, West Bengal, 712407, India; Captive and Field Herpetology, 13 Hirfron, Anglesey, LL65 1YU, Wales, UK
| | - Gerard Martin
- The Liana Trust, Survey #1418/1419, Rathnapuri, Hunsur, Karnataka, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
6
|
Abstract
Although oral venom systems are ecologically important characters, how they originated is still unclear. In this study, we show that oral venom systems likely originated from a gene regulatory network conserved across amniotes. This network, which we term the “metavenom network,” comprises over 3,000 housekeeping genes coexpressed with venom and play a role in protein folding and modification. Comparative transcriptomics revealed that the network is conserved between venom glands of snakes and salivary glands of mammals. This suggests that while these tissues have evolved different functions, they share a common regulatory core, that persisted since their common ancestor. We propose several evolutionary mechanisms that can utilize this common regulatory core to give rise to venomous animals from their nonvenomous ancestors. Oral venom systems evolved multiple times in numerous vertebrates enabling the exploitation of unique predatory niches. Yet how and when they evolved remains poorly understood. Up to now, most research on venom evolution has focused strictly on the toxins. However, using toxins present in modern day animals to trace the origin of the venom system is difficult, since they tend to evolve rapidly, show complex patterns of expression, and were incorporated into the venom arsenal relatively recently. Here we focus on gene regulatory networks associated with the production of toxins in snakes, rather than the toxins themselves. We found that overall venom gland gene expression was surprisingly well conserved when compared to salivary glands of other amniotes. We characterized the “metavenom network,” a network of ∼3,000 nonsecreted housekeeping genes that are strongly coexpressed with the toxins, and are primarily involved in protein folding and modification. Conserved across amniotes, this network was coopted for venom evolution by exaptation of existing members and the recruitment of new toxin genes. For instance, starting from this common molecular foundation, Heloderma lizards, shrews, and solenodon, evolved venoms in parallel by overexpression of kallikreins, which were common in ancestral saliva and induce vasodilation when injected, causing circulatory shock. Derived venoms, such as those of snakes, incorporated novel toxins, though still rely on hypotension for prey immobilization. These similarities suggest repeated cooption of shared molecular machinery for the evolution of oral venom in mammals and reptiles, blurring the line between truly venomous animals and their ancestors.
Collapse
|
7
|
Aird SD, Arora J, Barua A, Qiu L, Terada K, Mikheyev AS. Population Genomic Analysis of a Pitviper Reveals Microevolutionary Forces Underlying Venom Chemistry. Genome Biol Evol 2018; 9:2640-2649. [PMID: 29048530 PMCID: PMC5737360 DOI: 10.1093/gbe/evx199] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/24/2022] Open
Abstract
Venoms are among the most biologically active secretions known, and are commonly believed to evolve under extreme positive selection. Many venom gene families, however, have undergone duplication, and are often deployed in doses vastly exceeding the LD50 for most prey species, which should reduce the strength of positive selection. Here, we contrast these selective regimes using snake venoms, which consist of rapidly evolving protein formulations. Though decades of extensive studies have found that snake venom proteins are subject to strong positive selection, the greater action of drift has been hypothesized, but never tested. Using a combination of de novo genome sequencing, population genomics, transcriptomics, and proteomics, we compare the two modes of evolution in the pitviper, Protobothrops mucrosquamatus. By partitioning selective constraints and adaptive evolution in a McDonald–Kreitman-type framework, we find support for both hypotheses: venom proteins indeed experience both stronger positive selection, and lower selective constraint than other genes in the genome. Furthermore, the strength of selection may be modulated by expression level, with more abundant proteins experiencing weaker selective constraint, leading to the accumulation of more deleterious mutations. These findings show that snake venoms evolve by a combination of adaptive and neutral mechanisms, both of which explain their extraordinarily high rates of molecular evolution. In addition to positive selection, which optimizes efficacy of the venom in the short term, relaxed selective constraints for deleterious mutations can lead to more rapid turnover of individual proteins, and potentially to exploration of a larger venom phenotypic space.
Collapse
Affiliation(s)
- Steven D Aird
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa-ken, Japan
| | - Jigyasa Arora
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa-ken, Japan
| | - Agneesh Barua
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa-ken, Japan
| | - Lijun Qiu
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa-ken, Japan
| | - Kouki Terada
- Okinawa Prefectural Institute of Health and the Environment, Biology and Ecology Group, Nanjo-shi, Okinawa, Japan
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa-ken, Japan
| |
Collapse
|
8
|
Krishnan NM, Panda B. Comparative analyses of putative toxin gene homologs from an Old World viper, Daboia russelii. PeerJ 2017; 5:e4104. [PMID: 29230357 PMCID: PMC5721910 DOI: 10.7717/peerj.4104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/07/2017] [Indexed: 11/25/2022] Open
Abstract
Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones, making the process cumbersome and time-consuming. Here, we report comparative sequence analyses of putative toxin gene homologs from Russell’s viper (Daboia russelii) using whole-genome sequencing data obtained from shed skin. When compared with the major venom proteins in Russell’s viper studied previously, we found 45–100% sequence similarity between the venom proteins and their putative homologs in the skin. Additionally, comparative analyses of 20 putative toxin gene family homologs provided evidence of unique sequence motifs in nerve growth factor (NGF), platelet derived growth factor (PDGF), Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz BPTI), cysteine-rich secretory proteins, antigen 5, andpathogenesis-related1 proteins (CAP) and cysteine-rich secretory protein (CRISP). In those derived proteins, we identified V11 and T35 in the NGF domain; F23 and A29 in the PDGF domain; N69, K2 and A5 in the CAP domain; and Q17 in the CRISP domain to be responsible for differences in the largest pockets across the protein domain structures in crotalines, viperines and elapids from the in silico structure-based analysis. Similarly, residues F10, Y11 and E20 appear to play an important role in the protein structures across the kunitz protein domain of viperids and elapids. Our study highlights the usefulness of shed skin in obtaining good quality high-molecular weight DNA for comparative genomic studies, and provides evidence towards the unique features and evolution of putative venom gene homologs in vipers.
Collapse
Affiliation(s)
- Neeraja M Krishnan
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Binay Panda
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| |
Collapse
|
9
|
Fernández ML, Quartino PY, Arce-Bejarano R, Fernández J, Camacho LF, Gutiérrez JM, Kuemmel D, Fidelio G, Lomonte B. Intravascular hemolysis induced by phospholipases A 2 from the venom of the Eastern coral snake, Micrurus fulvius: Functional profiles of hemolytic and non-hemolytic isoforms. Toxicol Lett 2017; 286:39-47. [PMID: 29197624 DOI: 10.1016/j.toxlet.2017.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
A unique feature of the venom of Micrurus fulvius (Eastern coral snake) is its ability to induce severe intravascular hemolysis in particular species, such as dogs or mice. This effect was previously shown to be induced by distinct phospholipase A2 (PLA2) isoforms which cause direct hemolysis in vitro, an uncommon finding for such enzymes. The functional profiles of PLA2-17, a direct hemolytic enzyme, and PLA2-12, a co-existing venom isoform lacking such effect, were compared. The enzymes differed not only in their ability to cause intravascular hemolysis: PLA2-17 additionally displayed lethal, myotoxic, and anticoagulant actions, whereas PLA2-12 lacked these effects. PLA2-12 was much more active in hydrolyzing a monodisperse synthetic substrate than PLA2-17, but the catalytic activity of latter was notably higher on a micellar substrate, or towards pure phospholipid artificial monolayers under controlled lateral pressures. Interestingly, PLA2-17 could hydrolyze substrate at a pressure of 20 mN m-1, in contrast to PLA2-12 or the non-toxic pancreatic PLA2. This suggests important differences in the monolayer penetrating power, which could be related to differences in toxicity. Comparative examination of primary structures and predicted three-dimensional folding of PLA2-12 and PLA2-17, revealed that differences concentrate in their N-terminal and central regions, leading to variations of the surface properties at the membrane interacting interface. PLA2-17 presents a less basic interfacial surface than PLA2-12, but more bulky aromatic residues, which could be associated to its higher membrane-penetrating strength. Altogether, these structural and functional comparative observations suggest that the ability of PLA2s to penetrate substrate interfaces could be a major determinant of toxicity, perhaps more important than protein surface charge.
Collapse
Affiliation(s)
- María Laura Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Pablo Yunes Quartino
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Ruth Arce-Bejarano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Luis F Camacho
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Daniel Kuemmel
- Biology and Chemistry Department, University of Osnabrueck, Osnabrueck, Germany
| | - Gerardo Fidelio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica.
| |
Collapse
|
10
|
The Evolution of Fangs, Venom, and Mimicry Systems in Blenny Fishes. Curr Biol 2017; 27:1184-1191. [DOI: 10.1016/j.cub.2017.02.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 11/24/2022]
|
11
|
Mutation, Duplication, and More in the Evolution of Venomous Animals and Their Toxins. EVOLUTION OF VENOMOUS ANIMALS AND THEIR TOXINS 2017. [DOI: 10.1007/978-94-007-6458-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Dowell NL, Giorgianni MW, Kassner VA, Selegue JE, Sanchez EE, Carroll SB. The Deep Origin and Recent Loss of Venom Toxin Genes in Rattlesnakes. Curr Biol 2016; 26:2434-2445. [PMID: 27641771 DOI: 10.1016/j.cub.2016.07.038] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/01/2016] [Accepted: 07/15/2016] [Indexed: 11/26/2022]
Abstract
The genetic origin of novel traits is a central but challenging puzzle in evolutionary biology. Among snakes, phospholipase A2 (PLA2)-related toxins have evolved in different lineages to function as potent neurotoxins, myotoxins, or hemotoxins. Here, we traced the genomic origin and evolution of PLA2 toxins by examining PLA2 gene number, organization, and expression in both neurotoxic and non-neurotoxic rattlesnakes. We found that even though most North American rattlesnakes do not produce neurotoxins, the genes of a specialized heterodimeric neurotoxin predate the origin of rattlesnakes and were present in their last common ancestor (∼22 mya). The neurotoxin genes were then deleted independently in the lineages leading to the Western Diamondback (Crotalus atrox) and Eastern Diamondback (C. adamanteus) rattlesnakes (∼6 mya), while a PLA2 myotoxin gene retained in C. atrox was deleted from the neurotoxic Mojave rattlesnake (C. scutulatus; ∼4 mya). The rapid evolution of PLA2 gene number appears to be due to transposon invasion that provided a template for non-allelic homologous recombination.
Collapse
Affiliation(s)
- Noah L Dowell
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA.
| | - Matt W Giorgianni
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Victoria A Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Jane E Selegue
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center and Department of Chemistry, Texas A&M University-Kingsville, MSC 224, Kingsville, TX 78363, USA
| | - Sean B Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|