1
|
Chowdhury RR, Rose S, Ezan F, Sovadinová I, Babica P, Langouët S. Hepatotoxicity of cyanotoxin microcystin-LR in human: Insights into mechanisms of action in the 3D culture model Hepoid-HepaRG. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123047. [PMID: 38036087 DOI: 10.1016/j.envpol.2023.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin produced by harmful cyanobacterial blooms (CyanoHABs). MC-LR targets highly differentiated hepatocytes expressing organic anion transporting polypeptides OATP1B1 and OATP1B3 that are responsible for hepatocellular uptake of the toxin. The present study utilized an advanced 3D in vitro human liver model Hepoid-HepaRG based on the cultivation of collagen-matrix embedded multicellular spheroids composed of highly differentiated and polarized hepatocyte-like cells. 14-d-old Hepoid-HepaRG cultures showed increased expression of OATP1B1/1B3 and sensitivity to MC-LR cytotoxicity at concentrations >10 nM (48 h exposure, EC20 = 26 nM). MC-LR induced neither caspase 3/7 activity nor expression of the endoplasmic reticulum stress marker gene BiP/GRP78, but increased release of pro-inflammatory cytokine IL-8, indicating a necrotic type of cell death. Subcytotoxic (10 nM) and cytotoxic (≥100 nM) MC-LR concentrations disrupted hepatocyte functions, such as xenobiotic metabolism phase-I enzyme activities (cytochrome P450 1A/1B) and albumin secretion, along with reduced expression of CYP1A2 and ALB genes. MC-LR also decreased expression of HNF4A gene, a critical regulator of hepatocyte differentiation and function. Genes encoding hepatobiliary membrane transporters (OATP1B1, BSEP, NTCP), hepatocyte gap junctional gene connexin 32 and the epithelial cell marker E-cadherin were also downregulated. Simultaneous upregulation of connexin 43 gene, primarily expressed by liver progenitor and non-parenchymal cells, indicated a disruption of tissue homeostasis. This was associated with a shift in the expression ratio of E-cadherin to N-cadherin towards the mesenchymal cell marker, a process linked to epithelial-mesenchymal transition (EMT) and hepatocarcinogenesis. The effects observed in the human liver cell in vitro model revealed mechanisms that can potentially contribute to the MC-LR-induced promotion and progression of hepatocellular carcinoma (HCC). Hepoid-HepaRG cultures provide a robust, accessible and versatile in vitro model, capable of sensitively detecting hepatotoxic effects at toxicologically relevant concentrations, allowing for assessing hepatotoxicity mechanisms, human health hazards and impacts of environmental hepatotoxins, such as MC-LR.
Collapse
Affiliation(s)
- Riju R Chowdhury
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Sophie Rose
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Frédéric Ezan
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Sophie Langouët
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
2
|
Blagojević D, Babić O, Kaišarević S, Stanić B, Mihajlović V, Davidović P, Marić P, Smital T, Simeunović J. Evaluation of cyanobacterial toxicity using different biotests and protein phosphatase inhibition assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49220-49231. [PMID: 33932210 DOI: 10.1007/s11356-021-14110-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria are prolific producers of numerous toxic compounds, among which microcystins (hepatotoxins) are the most frequently found. Cyanobacterial bloom in freshwaters is an increasing problem, and there is still a need for rapid and reliable methods for the detection of toxic cyanobacterial samples. In the present study, the toxicity of crude extracts of 11 cyanobacterial strains from different genera has been assessed on two cell lines (human hepatocellular carcinoma HepG2 and rainbow trout (Oncorhynchus mykiss) liver-derived RTL-W1 cells), crustaceans (Daphnia magna and Artemia salina), and zebrafish (Danio rerio) embryos, as well as by protein phosphatase 1 (PP1) inhibition assay and ELISA test to determine whether the toxicity could be due to the presence of hepatotoxins/microcystins. All the tested strains exhibited toxicity on HepG2 cell line (IC50 from 35 to 702 μg mL-1), including Arthrospira (Spirulina) strains, while toxicity against the RTL-W1 cells was detected only in the positive reference Microcystis PCC 7806 and Nostoc 2S9B. Tested strains expressed higher toxicity to D. magna and zebrafish embryos in comparison to A. salina, whereby Nostoc LC1B and Nostoc S8 belonged to the most toxic strains. The PP1-inhibiting compounds have been detected by PP1 assay only in four strains (Microcystis PCC 7806, Oscillatoria K3, Nostoc LC1B, and Nostoc S8), indicating that their toxic potency can be attributed to these compounds. On the other hand, very low levels of microcystins, as confirmed by ELISA, were insufficient to explain toxicity and different toxic potencies of tested cyanobacteria. Results presented in this study suggested HepG2 cell line as a particularly suitable model for cyanobacterial toxicity assessment. In addition, they highlight terrestrial cyanobacterial strains as potent producers of toxic compounds.
Collapse
Affiliation(s)
- Dajana Blagojević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Olivera Babić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Sonja Kaišarević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Bojana Stanić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Varja Mihajlović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Petar Davidović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Petra Marić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, 10000, Zagreb, Croatia
| | - Tvrtko Smital
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, 10000, Zagreb, Croatia
| | - Jelica Simeunović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia.
| |
Collapse
|
3
|
Li K, Huang M, Xu P, Wang M, Ye S, Wang Q, Zeng S, Chen X, Gao W, Chen J, Zhang Q, Zhong Z, Sun Y, Liu Q. Microcystins-LR induced apoptosis via S-nitrosylation of GAPDH in colorectal cancer cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110096. [PMID: 31901813 DOI: 10.1016/j.ecoenv.2019.110096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/25/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Microcystins-LR (MC-LR), a cyanobacterial toxins, initiate apoptosis in normal and tumor cells. Nitric oxide produced by iNOS is necessary for MC-LR-induced apoptosis. However, the underlying mechanism of NO mediated MC-LR cytotoxicity remains unclear. Here, we performed in vitro experiments on MC-LR cytotoxicity associated with NO induced S-nitrosyation of GAPDH in human colon cancer cells SW480. MTT assay indicated that MC-LR decreased the cellular viability by high concentration (>1 μM). Flow cytometer assay revealed that apoptosis was core mode for MC-LR cytotoxicity. Griess assay showed that MC-LR exposure increased the release of NO through the function of NOS1 and NOS2 in SW480 cells. In turn, NO stress induced the S-nitrosylated modification of GAPDH leading to its nuclear translocation following Siah1 binding. CHIP assay showed that the nuclear GADPH increased P53 transcript of a panner of apoptosis related genes. Moreover, apoptosis induced by MC-LR could be reduced by GAPDH or si-Siah1 or NOSs inhibitor, L-NAME. Thus, our study verified a molecular mechanism of NO/GAPDH/Siah1 cascade in MC-LR mediated apoptosis in colorectal cancer cells, providing a further understanding the in vitro molecular mechanism of MC-LR colorectal toxicity.
Collapse
Affiliation(s)
- Keyi Li
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Pengfei Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meng Wang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianli Wang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xi Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenwen Gao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuo Zhong
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, China
| | - Yang Sun
- Delinhai Environmental Technology, Inc, Wuxi, 214000, China
| | - Qiuzhen Liu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Center for Medical Transformation, Shunde Hospital, Southern Medical University, Foshan, 528308, China.
| |
Collapse
|
4
|
Meneely JP, Hajšlová J, Krska R, Elliott CT. Assessing the combined toxicity of the natural toxins, aflatoxin B 1, fumonisin B 1 and microcystin-LR by high content analysis. Food Chem Toxicol 2018; 121:527-540. [PMID: 30253246 DOI: 10.1016/j.fct.2018.09.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 12/19/2022]
Abstract
As human co-exposure to natural toxins through food and water is inevitable, risk assessments to safeguard health are necessary. Aflatoxin B1 and fumonisin B1, frequent co-contaminants of maize and microcystin-LR, produced in freshwater by cyanobacteria are all naturally occurring potent toxins that threaten human health. Populations in the poorest regions of the world may suffer repeated simultaneous exposure to these contaminants. Using High Content Analysis, multiple cytotoxicity endpoints were measured for the individual toxins and mixtures in various cell lines. Results highlighted that significant cytotoxic effects were observed for aflatoxin B1 in all cell lines while no cytotoxic effects were observed for fumonisin B1 or microcystin-LR. Aflatoxin B1/microcystin-LR was cytotoxic in the order HepG2 > Caco-2 > MDBK. Fumonisin B1/microcystin-LR affected MDBK cells. The ternary mixture was cytotoxic to all cell lines. Most combinations were additive, however antagonism was observed for binary and ternary mixtures in HepG2 and MDBK cell lines at low and high concentrations. Synergy was observed in all cell lines, including at low concentrations. The combination of these natural toxins may pose a significant risk to populations in less developed countries. Furthermore, the study highlights the complexity around trying to regulate for human exposure to multiple contaminants.
Collapse
Affiliation(s)
- Julie P Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, BT7 1NN, United Kingdom.
| | - Jana Hajšlová
- Faculty of Food & Biochemical Technology, Department of Food Analysis & Nutrition, University of Chemistry & Technology, Technická 3, 166 28, Prague 6, Czech Republic
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, BT7 1NN, United Kingdom
| |
Collapse
|
5
|
Basu A, Dydowiczová A, Čtveráčková L, Jaša L, Trosko JE, Bláha L, Babica P. Assessment of Hepatotoxic Potential of Cyanobacterial Toxins Using 3D In Vitro Model of Adult Human Liver Stem Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10078-10088. [PMID: 30059226 DOI: 10.1021/acs.est.8b02291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyanotoxins microcystin-LR (MC-LR) and cylindrospermopsin (CYN) represent hazardous waterborne contaminants and potent human hepatotoxins. However, in vitro monolayer cultures of hepatic cell lines were found to recapitulate, poorly, major hepatocyte-specific functions and inadequately predict hepatotoxic effects of MC-LR and CYN. We utilized 3-dimensional (3D), scaffold-free spheroid cultures of human telomerase-immortalized adult liver stem cells HL1-hT1 to evaluate hepatotoxic potential of MC-LR and CYN. In monolayer cultures of HL1-hT1 cells, MC-LR did not induce cytotoxic effects (EC50 > 10 micromol/L), while CYN inhibited cell growth and viability (48h-96h EC50 ≈ 5.5-0.6 micromol/L). Growth and viability of small growing spheroids were inhibited by both cyanotoxins (≥0.1 micromol/L) and were associated with blebbing and disintegration at the spheroid surface. Hepatospheroid damage and viability reduction were observed also in large mature spheroids, with viability 96h-EC50 values being 0.04 micromol/L for MC-LR and 0.1 micromol/L for CYN, and No Observed Effect Concentrations <0.01 micromol/L. Spheroid cultures of adult human liver stem cells HL1-hT1 exhibit sensitivity comparable to cultures of primary hepatocytes and provide a simple, practical, and cost-effective tool, which can be effectively used in environmental and toxicological research, including assessment of hepatotoxic potential and effect-based monitoring of various samples contaminated with toxic cyanobacteria.
Collapse
Affiliation(s)
- Amrita Basu
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Aneta Dydowiczová
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Lucie Čtveráčková
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Libor Jaša
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - James E Trosko
- Department of Pediatrics and Human Development & Institute for Integrative Toxicology , Michigan State University , 1129 Farm Lane , East Lansing , 48824 Michigan , United States
| | - Luděk Bláha
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| |
Collapse
|
6
|
Tumor-promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. Toxicol Appl Pharmacol 2018. [PMID: 29534881 DOI: 10.1016/j.taap.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HL1-hT1 cell line represents adult human liver stem cells (LSCs) immortalized with human telomerase reverse transcriptase. In this study, HL1-hT1 cells were found to express mesenchymal markers (vimentin, CD73, CD90/THY-1 and CD105) and an early hepatic endoderm marker FOXA2, while not expressing hepatic progenitor (HNF4A, LGR5, α-fetoprotein) or differentiated hepatocyte markers (albumin, transthyretin, connexin 32). In response to microcystin-LR (MC-LR), a time- and concentration-dependent formation of MC-positive protein bands in HL1-hT1 cells was observed. Cellular accumulation of MC-LR occurred most likely via mechanisms independent on organic anion transporting polypeptides (OATPs) or multidrug resistance (MDR) proteins, as indicated (a) by a gene expression analysis of 11 human OATP genes and 4 major MDR genes (MDR1/P-glycoprotein, MRP1, MRP2 and BCRP); (b) by non-significant effects of OATP or MDR1 inhibitors on MC-LR uptake. Accumulation of MC-positive protein bands in HL1-hT1 cells was associated neither with alterations of cell viability and growth, dysregulations of ERK1/2 and p38 kinases, reactive oxygen species formation, induction of double-stranded DNA breaks nor modulations of stress-inducible genes (ATF3, HSP5). It suggests that LSCs might have a selective, MDR1-independent, survival advantage and higher tolerance towards MC-induced cytotoxic, genotoxic or cancer-related events than differentiated adult hepatocytes, fetal hepatocyte or malignant liver cell lines. HL1-hT1 cells provide a valuable in vitro tool for studying effects of toxicants and pharmaceuticals on LSCs, whose important role in the development of chronic toxicities and liver diseases is being increasingly recognized.
Collapse
|
7
|
Ahn S, Magaña AA, Bozarth C, Shepardson J, Morré J, Dreher T, Maier CS. Integrated identification and quantification of cyanobacterial toxins from Pacific Northwest freshwaters by Liquid Chromatography and High-resolution Mass Spectrometry. J MEX CHEM SOC 2018; 62:10.29356/jmcs.v62i2.386. [PMID: 30214641 PMCID: PMC6133267 DOI: 10.29356/jmcs.v62i2.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The occurrence of harmful algal blooms in nutrient-rich freshwater bodies has increased world-wide, including in the Pacific Northwest. Some cyanobacterial genera have the potential to produce secondary metabolites that are highly toxic to humans, livestock and wildlife. Reliable methods for the detection of cyanobacterial toxins with high specificity and low limits of detection are in high demand. Here we test a relatively new hybrid high resolution accurate mass quadrupole time-of-flight mass spectrometry platform (TripleTOF) for the analysis of cyanobacterial toxins in freshwater samples. We developed a new method that allows the quantitative analysis of four commonly observed microcystin congeners (LR, LA, YR, and RR) and anatoxin-a in a 6-min LC run without solid-phase enrichment. Limits of detection for the microcystin congeners (LR, LA, YR, and RR) and anatoxin-a were <5 ng/L (200-fold lower than the guideline value of 1 μg/L as maximum allowable concentration of MC-LR in drinking water). The method was applied for screening freshwaters in the Pacific Northwest during the bloom and post-bloom periods. The use of high resolution mass spectrometry and concomitant high sensitivity detection of specific fragment ions with high mass accuracy provides an integrated approach for the simultaneous identification and quantification of cyanobacterial toxins. The method is sensitive enough for detecting the toxins in single Microcystis colonies.
Collapse
Affiliation(s)
- Soyoun Ahn
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | | - Connie Bozarth
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jonathan Shepardson
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jeffery Morré
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Theo Dreher
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
8
|
McLellan NL, Manderville RA. Toxic mechanisms of microcystins in mammals. Toxicol Res (Camb) 2017; 6:391-405. [PMID: 30090507 PMCID: PMC6060792 DOI: 10.1039/c7tx00043j] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Microcystins, such as microcystin-leucine arginine (MC-LR), are some of the most toxic and prevalent cyanotoxins produced by cyanobacteria in freshwater and saltwater algal blooms worldwide. Acute and chronic exposures to microcystins are primarily known to cause hepatotoxicity; cellular damage and genotoxicity within mammalian livers. However, in vivo studies indicate that similar damage may occur in other mammalian organs and tissues, such as the kidney, heart, reproductive systems, and lungs - particularly following chronic low-dose exposures. Mechanisms of toxicity of mycrocystins are reviewed herein; including cellular uptake, interaction with protein phosphatases PP1 and PP2A, cytoskeletal effects, formation of oxidative stress and induction of apoptosis. In general, the mode of action of toxicity by MCs in mammalian organs are similar to those that have been observed in liver tissues. A comprehensive understanding of the toxic mechanisms of microcystins in mammalian tissues and organs will assist in the development of risk assessment approaches to public health protection strategies and the development of robust drinking water policies.
Collapse
Affiliation(s)
- Nicole L McLellan
- School of Environmental Sciences , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Richard A Manderville
- Department of Chemistry and Toxicology , University of Guelph , Guelph , Ontario N1G 2W1 , Canada . ; ; Tel: +1-519-824-4120, x53963
| |
Collapse
|
9
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
10
|
Microcystin-LR induced liver injury in mice and in primary human hepatocytes is caused by oncotic necrosis. Toxicon 2016; 125:99-109. [PMID: 27889601 DOI: 10.1016/j.toxicon.2016.11.254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022]
Abstract
Microcystins are a group of toxins produced by freshwater cyanobacteria. Uptake of microcystin-leucine arginine (MC-LR) by organic anion transporting polypeptide 1B2 in hepatocytes results in inhibition of protein phosphatase 1A and 2A, and subsequent cell death. Studies performed in primary rat hepatocytes demonstrate prototypical apoptosis after MC-LR exposure; however, no study has directly tested whether apoptosis is critically involved in vivo in the mouse, or in human hepatocytes. MC-LR (120 μg/kg) was administered to C57BL/6J mice and cell death was evaluated by alanine aminotransferase (ALT) release, caspase-3 activity in the liver, and histology. Mice exposed to MC-LR had increases in plasma ALT values, and hemorrhage in the liver, but no increase in capase-3 activity in the liver. Pre-treatment with the pan-caspase inhibitor z-VAD-fmk failed to protect against cell death measured by ALT, glutathione depletion, or hemorrhage. Administration of MC-LR to primary human hepatocytes resulted in significant toxicity at concentrations between 5 nM and 1 μM. There were no elevated caspase-3 activities and pretreatment with z-VAD-fmk failed to protect against cell death in human hepatocytes. MC-LR treated human hepatocytes stained positive for propidium iodide, indicating membrane instability, a marker of necrosis. Of note, both increases in PI positive cells, and increases in lactate dehydrogenase release, occurred before the onset of complete actin filament collapse. In conclusion, apoptosis does not contribute to MC-LR-induced cell death in the in vivo mouse model or in primary human hepatocytes in vitro. Thus, targeting necrotic cell death mechanisms will be critical for preventing microcystin-induced liver injury.
Collapse
|
11
|
Yuan J, Gu Z, Zheng Y, Zhang Y, Gao J, Chen S, Wang Z. Accumulation and detoxification dynamics of microcystin-LR and antioxidant responses in male red swamp crayfish Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:8-18. [PMID: 27218425 DOI: 10.1016/j.aquatox.2016.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
MC-LR is one of major microcystin isoforms with potent hepatotoxicity. In the present study, we aim to: 1) explore the dynamics of MC-LR accumulation and elimination in different tissues of male red swamp crayfish Procambarus clarkii; 2) reveal the mechanisms underlying hepatic antioxidation and detoxification. In the semi-static toxicity tests under the water temperature of 25±2°C, P. clarkii were exposed to 0.1, 1, 10 and 100μg/L MC-LR for 7days for accumulation and subsequently relocated to freshwater for another 7days to depurate MC-LR. MC-LR was measured in the hepatopancreas, intestine, abdominal muscle and gill by HPLC. The enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST), content of glutathione (GSH), and transcripts of Mn-sod, cat, gpx1, Mu-gst, heat shock protein90 (hsp90), hsp70 and hsp60 in hepatopancreas were detected. The results showed that P. clarkii accumulated more MC-LR in intestine, and less in abdominal muscle and gill during accumulation period and eliminated the toxin more quickly in gill and abdominal muscle, and comparatively slowly in intestine during depuration period. The fast increase of SOD and CAT activities at early stage, subsequent decrease at later stage of accumulation period and then fast increase during depuration period were partially consistent with the transcriptional changes of their respective genes. GPx was activated by longer MC-LR exposure and gpx1 mRNA expression showed uncoordinated regulation pattern compared with its enzyme. Hsp genes were up-regulated when P. clarkii was exposed to MC-LR.
Collapse
Affiliation(s)
- Julin Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang 313001, China
| | - Zhimin Gu
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang 313001, China.
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|